
1
NOS/VE Cycle 9 Helpful Hints

10126/82

CYCLE q HELPFUL HINTS

This paper describes helpful hints on how to use Cycle q of
NOS/VE. It is intended to supplement, rather than to replace,
the standard NOS/VE docuaentatlon. If YOU have any Questions or
suggestions, please see Tom McGee or Bonnie Swierzbin. Appendix
D lists background documents and how to obtain them.

I

To obtain additional copies of this document while funning on
SHIOl at Arden Hills, please type:

SES,INT1.lISTHINTS C=<number of copies)

To obtain a copy with revision bars against the Helpful Hints
of the previous build, onE can type:

SES,INT1.lISTHINTS PEVB C=<number of copies)

The C parameter is optional and defaults to one.

Oate

12/22/80
2112181
6/09/81
6/19/81
8/28/81
11/06/81
3101182
4/15/82
5/01/82
6/30/82
7/29/82
10/22/82

Change s

Revisions for NOS/VE Phase C
Additional Revisions for MDS/VE Phase C
Revisions for NOS/VE Build N
A cd i t i on a. Rev i s 10 ns f or N OS I V E B u i 'd N
Revisions for NOS/VE Build 0
Revisions for NOS/VE Build P
Revisions for NOS/VE Build Q

Revisions for NOS/VE Cycle 2
Revisions for NOS/VE Cycle 3
Revisions for NOS/VE Cycle 5
REvisions for NOS/VE Cycle 1
Revisions for NOS/VE Cycle 9

Cycle 9, October 1982

• t

• •

1-1
HOS/VE Cycle 9 Helpful Hints

10126/82

1.0 MAJOR CHARACTERISTICS OF THIS BUILD

o Cycle 6 and subsequent cycles of NOS/VE are huilt to run with
a NOS 6.1 base system and the DSO displays and commands have
changed considerably from the NOS 5.3 base system used with
Cycle 5. (See also the next bulfet.) This hints document has
been updated to reflect these changes where they affect
NOS/VE, for Instance, using the command NVEnnnn to bring up
NOS/VE instead of cp.NVEnnnn. For more information on the NOS
commands see 5J SwJerzbinls memo of July 23 titled tNOS 6.1
Notes', the NOS reference manuals listed In Appendix A, or the
NOS R6 Software ReleasE Bulletin.

WARNING (1): NOS Jots and subsystems may now be brought
down by entering STOP, jsn., for example, STOP,BIO. wtll br Ing
down BATCHIO. 00 NOT, DO NOT, DO NOT enter STOP,NVE.

WARNING (2): SES R2C must be used with NOS V2 systems.

The formats of the validations and user Index files
(usually named VAlIDlZ and VALINDZ) have changed between NOS
Version 1 and NOS Version 2. The modset which was added to
the NOS 5 E55 syst em (the bas e for eye Ie 7) changi ng the names
of these fltes to NEWDUZ and NEWNOZ has QAt been added to 5f40
(the base for Cycle 9). This means that in order to run Cycle
q the site analyst must make a copy of file NEWDUZ on file
VALIOUZ and a copy of file file NEWNOZ on file VALINDZ. Then
when there is no longer any need to run Cycle 7, NEWOUZ and
NEWNDZ.can be purged.

o 9.1 runs with NOS 5F41 and 1 Series networks, which Is the
same level of networks that Cycle 7 runs with. 9.2 and
subsequent systems run with NOS 5G41 and 4 Series networks.
The process for bringing up NAM and IAF has changed with the
new level networks; seE Section 4 for details.

o

o

Substantial changes have been made
Cycle 9. See Section 4 for details.

to the OS procedure in

Backup fifes created in Cycle 7 by the
BACKUP_PERMANENT_FILE utility wll' not be able to be
the RESTORE_PERMANENT_FIlE uti' ity in Cycles q and 10.
backup files created 11'\ eye Ie q wi II not be abl e to be
the RESTORE_PERMANENT_fllE utility In Cycle 10.

NOS/VE
used by

Also,
us ad by

Cycle 9, October 1982

• • • •

• • • •
• ..

1-2
NOS/VE Cycle 9 Helpful Hints

10126/82

1.0 MAJOR CHARACTERISTICS Of THIS BUILD

o SeL Command list Changes

Management of Sel command lists has changed, particularly
as It relates to asynchronous tasks. The changes were made
primarity for performance and should have no impact on most
(all) users. The chan~es are:

An asynchronous task now has Its own "Job level" command
list which is initialized to the "Job level" command
list of Its par~nt task. The asynchronous task may
alter its command list without affecting its parent
task.

The system supplied command
(osf$command_.,brary) is now searched as part
Ssystem command list entry.

I i br ar y
of the

Support for the fol lowing Hold" command names has been
removed:

ACCEPT, eT, DECLARE_VARIABLE, DECVAR, DO, INCLUDE,
REMOVE_VARIABLE and REMVAR

Certain commands which previously were always found at
the front of the command list have been moved to a list
which Is searched after all other command list entries
have been searched. (This is to allow a user to supply
his/her own version.) The affected commands are:

ACCEPT_LINE, ACCl, CREATE_VARIABLE, CREV,
DELETE_VARIABLE, OElV, INCF, INCLUDE_FILE,
INCl, INCLUDE_LINE, SETCl and SET_COMMAND_lIST.

The convention for function names (that their first
character be a "$") has been made Into a rule (I.e. a
n am e t hat doe s not beg i n wit h a "$ "wi " not be
recognized as a function name.)

The PROCedure "append_command_list" no longer exists.
Its operation ~as been replaced by a new parameter on
the set_command_llst command, namely "placement" or "pfl
with possible values of "after", "a", "before", end Db",
with "before" as the default. This parameter affects
whether command list entries being added are placed
before or after the current entries in the list.

The commands doc~mented as being operator only commands
are now actual.y available only to the operator.

The HCS commands are no longer supported.

Cycle 9, October 1982

• • • •
t •

1-3
NOS/VE Cycle 9 Helpful Hints

10126/82

1.0 MAJOR CHARACTERISTICS OF THIS BUILD

The full mode of the dlsplay_command_.ist command. has
been upgraded so that the commands on
osfScommand_library are displayed as part of the Ssystem
command list entry. Also, the commands available on an
object library which is a command list entry are shown
In the display.

The Sfile function now supports the cycle_number (cn)
option.

o QUICK_DEADSTART does net work In Cycle 9. Use of this command
Mil I hang the system.

o To access NDS/VE interactively, the user must login to the
application named VEtAF. For example: ,DAH,DAHX,VEIAF The
previous application name was TAF.

o With Cycle 1, the operator of the NOS/VE dual state system can
simutate terminal breaks. She/he may Issue at any time 9
*8REAK at the K display for the NVE job. This wit. start the
terminal break, which works just like the Interactive break.
The broken command may be continued by issuing the
resume_command (resc) cr may be terminated by Issuing the
terminate_command (tere). If the command get_file is broken
Into, the command wit' be terminated by the Remote Host.
After the OS proc has been executed, a term1nal break at the
command level will cause the Sel task to terminate. The Job
monitor task will restart the Sel task after a brief delay (up
to 20 seconds).

o On 2 occasions, a procedure which (among other things)
executed a TERMINATE_lOG crashed a Cycle 7 system. The PSR
number for this problem is not available yet and the guilty
party hasn't been Identified, but It Is suggested that the
user treat TERMINATE_LCG with a healthy suspicion.

o The user should not issue a pause or terminate break while
OISPlAY_COMMAND_lIST Is executing; this wilt CRASH the
system.

o Known Remote Host problems:

The user name put or the banner for a Job routed from the
170 is incorrect. This has been reported with PSR NVOD073 and
will be fixed in Cycle 9.

o Miscellaneous Set Changes:

A RING parameter has been added to the TASK/TASKEND

Cycle 9, October 1982

• • • 1

• • • •

1-4
NOS/VE Cycle 9 Helpful Hints

10126182

1.0 MAJOR CHARACTERISTICS Of THIS BUILD

command. This parameter may be used to switch to a new ring
of execution within the user's validated minimum_ring and
nominal_ring.

A SRING function has been added. It has no arguments and
returns the current ring of execution.

Commands from user Jobs are no longer written to the system
'og by default. This function Is controlled by the new
operator commands ACTIVATE_SYSTEM_LOGGING and
DEACTIVATE_SYSTEM_LOGGING.

The abbreviation for the SKIP_TAPE command has
corrected to SKIT from SKIPT.

A new internal interface, CLPSVALIDATE_NAME has
added. This is an INlINE procedure that should be
Instead of the high overhead ClPSCONVERT_STRING_TO_NAME.
com mo n de eke LX VN for i n t e r f ac e de t a i Is.)

been'

been
used
(See

o OISPLAY_FIlE leaves the source fite with an attrtbute of
RT=U. This can be corrected by setting the RT attribute back
to the correct value after the DISPLAY vatue: SElFA file RT=V

o COPY_FILE will not copy at EOI if it had been specified on the
COPF command. The foltowing sequence will accomplish copying
at EO I:

SETFA dest_flte OP=$EOI
COPF source_file dest_flle
SETFA dest_fite OP:$BOI

o The permanent file system has been modified to make files
Invisible when a" cycles have been purged even if one or more
of those cycles are sti II attached. This results in
references to the file emitting an unknown file message as
expected, ratber than an unknown cycle message containing an
Invalid cycle number. It also prevents display catalog
commands from showing the file as having zero cycles.

o The administer utility has been updated to correspond to Rev.
q of the NOS/VE Commend Interface ERS. Old command and
parameter names are no longer supported.

o The TAFNVE operator command (TAF control point) is no longer
required or available. The capabilities that were provided by
it have been packaged within the NVE subsystem control point.
The impact of this change is as follows:

Cycle 9, October 1982

I 1-5
NOS/VE Cycle 9 Helpful Hints

10126/82

1.0 MAJOR CHARACTERISTICS OF THIS BUILD

The K display is assigned to the same control point
during both deadstart and normal system operation.

Output from the system core debugger will no longer
appear at the NVE control point K-display. At I system
core debugger coromunication is via the MOO terminal.

The K.*SYEVE. command is no longer available.

The OFFSW,Jsn,6. command before doing a STOP,Jsn. is
not required to bring NVE down.

At. capabilities are available via the NVExxxx.
command. The NVE subsystem may be placed at any control
point (like HAM is).

o Cycle 5 (actually Cycle 4) of NQS/VE no longer supports the
Hold" command names for system commands. 80th "old" and "new"
names have been supported since Build Q. See DAP ARH4776 for
detal Is. As part of this change the abbreviations for the
COPY_FILE and PRINT_FILE commands have been corrected to COPF
and PRIF (from COPYF and PRINTF).

o The EXPLAIN command ~as Implemented In Cycle 4 of NOS/VE.
Don't get too excited about this, however, because as yet
there are no "explain level" message templates for any of the
system conditions. EXPLAIN wit' simply regurgitate the
regular message.

While Implementing the EXPLAIN command it was discovered that
the specification of the command (i.e. that it have an
optional "condition" parameter) was not nearly as useful as
having the first para.eter be a "status" value. So the
implementation deviates from the ERS in that the first
parameter to EXPLAIN Is MESSAGE_STATUS or MS and is of kind
STATUS. The SSTATUS function can be used to transform a
"condition" Into a "status". A OAP Is being written to make
this change official.

o NOS/Ve multiple mass storage volumes have been implemented in
Cycle 5. For more Information see the section 'Conflguration
Management'.

o The Interstate Communication Facility, which Is described in
Section 9 of the NOS/VE ERS - Program Interface (Rev. 8), has
been implemented. The callable subroutines described in
section 9.3 reside In User library lINKLI8 In the Integration
catalogs INTI, DEVl, REll, etc. NOS libraries SYSLIB and
SRVLIB are also required to complete the loading process.

Cycle 9. October 1982

1-6
NOS/VE Cycle 9 Helpful Hints

10126/82

1.0 MAJOR CHARACTERISTICS Of THIS BUILD

lOSEr loader commands must be used to select these libraries.

o Interactive Usage Restrictions:

When logging In to NOS/VE (i.e. HEllO,VEIAF etc.) do not
enter a terminate break (CTRL t) or a pause break (CTRL p)
before the 'welcome message 1 appears at the terminat. A
pause or terminate break entered before the interactive
NOS/VE Job has completed it's initialization may crash the
system.

A REQUEST_TERMINAL command in a batch job no longer crashes
the system.

o Any product or utility that is placed In the 'SYSTEM catalog
(or any frequently loaded program) should be bound using the
CREATE_MODULE subcomaand of the CREATE_OBJECT_LIBRARY
utility. This will mln1mlze overhead associated with loading
the product or utility.

o Debug responds to terminal breaks when a program is being
debugged. However, entering a pause or terminate break when
debug is active (i.e. the 081 prompt has appeared and the
user has not Issued the RUN command) will cause the task to
terminate.

o When sharing executable files via permanent files (i.e.
compilers, libraries, etc.) you should make the file an
object library via the CREATE_OBJECT_LIBRARY utility. By
sharing obJect libraries Instead of object files, the code Is
actually shared among ell tasks using the library; the library
Is not copied to another segment but Is executed directly.

1.1.1 EXECUTING PROGRAMS

PROCESS

Create an object text file by compiling a program on NOS.
Then perform the following steps on NOS/VE:

Acquire any necessary libraries (which are n21 quoted in text
embedded directives) by either:

Cycle q, October 1982

t • • t

NOS/VE Cycle 9 Helpful Hints

1.0 MAJOR CHARACTERISTICS OF THIS BUILD
1.1.1 EXECUTING PROGRAMS

1-7

10126/82

__ .~N_NN __ N_N _____ N ___ N _________ N_NNN ___ N_N ___ NN_N __ NNN_HH _____ NNH __

o Attaching them from the system catalog, either explicitly
or v I apr 0 log

or
o Creating the library file via the object Itbrary generator

or
o Staging the Ilbrar) file from NOS to NOS/VE using the

GET_OBJECT_LIBRARY command.

Get the file from NOS and convert the object text fite from
the CI data mapping to II data mapping by executing the
CONVERT_OBJECT_FIlE co.mand.

load and execute the program via the EXECUTE_TASK command,
specifying the necessary libraries with the LIBRARY parameter;
atternatively SET_PROGPAM_ATTRIBUTES may be used to include
the libraries in all subsequent EXECUTE_TASK commands.

Stage the loadmap from NOS/VE to NOS for printing by using
either:

o The REPLACE_FILE co~mand with A6 conversion mode specified
jf running on the simulator.

or
o The PRINT_FILE command if running on the hardware.

EXAMPLES

The fo.lowing is an example command sequence for executing a
program not requiring any libraries for loading:

Assumptions: all modules to be loaded are contained on the NOS
per man ·en t f I let cit x tr Sf •

CONVERT_OBJECT_FILE CITXTPS
EXECUTE_TASK CITXTRS PARAMETER=fprogram parameters'
PRINT_FILE LOADMAP

The foltowing is an example command sequence for executing 8
program requir Ing I i brat' es for loading:

Assumptions: the NOS permanent file fcitxtrs' contains object
text generated by the eYBIl eI compl'er. The compiler modules
reference procedures contained on the library 'mylib' and the
CYBIL run-time' Ibrary. These. tbfsri es have been generated on
NOS/VE and saved on NOS.

GET_OBJECT_LIBRARY MYLIB
SET_PROGRAM_ATTRIBUTES lOAD_MAP_OPTIONSa(BlOCK,ENTRY_POINT,SEGMENT

Cycle 9, October 1982

HOS/VE Cycle 9 Helpful Hints

1.0 MAJOR CHARACTERISTICS OF THIS BUILD
1.1.1 EXECUTING PROGRAMS

1-8

10126/82.

N ____ - _____________ N _______________________________ N __ * _____ N ______ _

CONVERT_OBJECT_FILE CITXTRS
EXECUTE_TASK CITXTRS 'program parameters' lIBRARY=MYLIB
PRINT_FILE LOADHAP

1.1.2 CREATE OBJECT LIBRARY ON NOS/VE AND SAVE IT ON NOS

o ClG0170 is NOS permanent fi Ie name for file containing (1
object text for modules to be Included in the library.

o IITEXT180 is NOS/VE local fi Ie name for r i Ie contai n i ng II
object text for modules to be Included In the' ibrary.

o lISRARY180 Is NOS/VE loca. ,j Ie name for the library being
created.

o IlIB170 Is NOS permanent file name for file containing the
library.

NOS/VE Job Commands

CONVERT_OBJECT_FIlE IITEXl180 ClG0170
CREATE_OBJECT_LIBRARY
AOO_MODUlE LIBRARY:IITEXT180
GENERATE_LIBRARY lIBRARY=lI8RARY180
QUIT
REPLACE_fILE lIBRARY180 IlIB170 OC=856

1.1.3 MODIFY A PREVIOUSLY SAVED OBJECT LIBRARY

o IlIB170 Is NOS permanent file name for fi Ie containing the old
library

o lIB RA RY 180 i s NOS I V E I 0 c a I file n am e for f j lee 0 n t a i n i : n 9 the
old 'Ibrary

o CM00170 Is NOS permanent file name for file containing Cl
object text for the new module

o NEWIIMOOULE Is NOS/VE tocal file name for file containing II
object text for the new module

Cycle 9, October 1982

1-9
NOS/VE Cycle 9 Helpful Hints

10126/82.

1.0 MAJOR CHARACTERISTICS OF THIS BUILD
1.1.3 MODIFY A PREVIOUSLY SA~ED OBJECT LIBRARY _____ MN ___________________ NNW_NNN_N ______ N ____________ NNNNNNN __ NNHNN

o NEWlIBRARY is NOS/VE l~c~1 file name for the library being
created

o N l I B17 0 i s NOS local f i 1 e n am e for new lib r a r y

NOS/VE Job Commands

GET_OBJECT_LIBRARY lIBRARY18Q IlIB170
CONVERT_OBJECT_FILE NEWIIMOOUlE CHOOl70
CREATE_OBJECT_LIBRARY
ADD_MODULE lIBRARY=LIBRARY180
REPLACE_MODULE lIBRARY=NEWIIHODULE

,GENERATE_LIBRARY lIBRARY=NEWlIBRARY
QUIT
REPLACE_FILE NEWlIBRARY Nl18170 OC=856

1.1.4 ROUTE AN INPUT FILE FROM NOS TO NOS/VE

Running from an interactive terminal, enter:

GET,f.Jename.
ROUTE,fllename,DC=lP,FC=RH.

The input file which is sent to NOS/VE must be in 6/12 ASCII
(or display code subset). The Job file must be a single
partition NOS record ccntaining NOS/VE commands. The first
statement must be a valid LOGIN command with user, password and
family name specified. Muttl partition input 'lIes are not
supported by NOS/VE so NOS data fites used by the program must be
obtained through the GET_FILE command.

1.1.5 PRINT A NOS/VE FILE

At NOS/VE job termlnat fon the Job log will be automat i ca" y
returned to NOS. The job log wi" be appended to the NOS/VE
output file OUTPUT. NOS/~E print files must be written by BAM as
6/8 ASCII RT=V. Print 'iles will be converted from 8/8 ASCII
RTaV to NOS 8/12 ASCII when they are sent to NOS and will be
printed In upper/lower case.

All NOS/VE output files wi II appear In the NOS output queue
(NOS Q,PR display) with the name NVExxxx 8S a banner. In order
to print a NOS/VE fl Ie, the following command must be issued
within your job or be entered from the system console via the

Cycle 9, October 1982

NOS/VE Cycle 9 Helpful Hints

1.0 MAJOR CHARACTERISTICS OF THIS BUILD
1.1.5 PRINT A NOS/VE FIL~

1-10

10126/82

--
operator facility:

Cycle 9, October 1982

2-1
NOS/VE Cyete 9 Helpful Hints

10/26/82

2.0 COMMAND INTERFACE STATUS

2.1.1 LOGIN TO NOS/VE

To initially login to NOS/VE via VEIAF, you must cause the
first login attempt to fail. This can be done by responding to
the "fAMILY:" login prompt with something like: "",". This must
be done because the systemw •• 1 try to connect the termi nal to
IAF on the first login attempt no matter what is typed. To
access VEIAF do the folloMing on the second "FAMILY:" prompt:

, user,password, VEIAF

You can access VEIAF from IAF by dOing "HELlO,VEIAF" or by
answering VEIAF to the system prompt "APPLICATION:".

2.1.2 TERMINAL USAGE

1) The slant (,) Is the prompt to enter a NOS/VE command. Any
normal NOS/VE commard can now be entered (continuation
lines are prompted with •• /). The futl ASCII character
set, lower or upper case and all specla' characters, can be
used.

2) A lOGOUT command ~III cause the NOS/VE Interactive Job to
terminate. A new NOS/VE Interactive Job can then be
started by responding to the 'APPLICATION:t prompt with
VE IAF.

3) Termina. breaks (control-t and control-p) can be used to
terminate a task or command and suspend a task and enter a
new task to process SeL commands. Contro'-t causes a
terminate break and control-p causes a pause break.
Terminate break will terminate a command or the most
recent 11 executed task. A pause break wi II susPE~nd
execution and allow commands to be entered. When a

Cycle q, October 1982

2-2
NOS/VE Cycle 9 Helpful Hints

10126/82

2.0 COMMAND INTERFACE STATUS
2.1.2 TERMINAL USAGE
~NN"~~NN~NNNN~~NW~N~NNNNNNNN_N~NNNNNNNWNNNNN_NNN_N_NNN_NNW_N_W_._W __

terminal Is In p:3use break state, two additlona'commands
ar e 8Y ai' a b t e:

RESUME_COMMAND - resume execution at the point of
interruption.

TERMINATE_COMMAND - cause a terminate break condition as
a terminate break had been entered.

80th terminate break ard pause break are available to programs
as conditions via the program management condition mechanism.

2.1.3 NOS/VE PROGRAM ACCESS TO THE TERMINAL

1) Interactive NOS/VE Jobs are able to obtain terminal input
through the AMPSGET_NEXT or AMPSGET_PARTIAL program
interface which can be used by both task services and user
ring programs. Interactive programs which use this
interface should be able to handle both upper and lower
case Input in order to make them more convenient to use in
both 64 and 96 character set modes.

During the next few months a command supported by the system
may not be in sync with your command interface document. The
parameter descriptor table gives an accurate, concise description
0' the command interface 8S currently supported.

The definition of a co.mand's parameter list Is enctosed In
parenthesis with a parameter description per line. Each
description has the general form:

PARAMETER NAME: ALLOWED PARAMETER VALUES = PARAMETER DEFAULT
VALUE

Par ameter Names
abbreviations.

describes the parameter name and any

ALLOWED PARAMETER VALUES - describes the kind of value allowed
and whether a list of values Is possible. The value kind can be

Cycle q, October 1982

NOS/VE Cycle 9 Helpful Hints

2.0 COMMAND INTERFACE STATUS
2.2 COMMAND AND PARAMETER NA~ES

2-3

10126/82

--
further qualIfIed. In some cases, the actual values allowed are
describ.d using the KEY notation. The value kinds include
INTEGER, STRING, NAME, FILE, STATUS.

PARAMETER DEFAULT VALUES describes the defaulting rules
and/or values for the parameter. $REQUIRED and SOPTIONAl are
obvious. Other values In this pos i tlon will be treated as if
they were entered by the user on command invocation.

See the PROC command in the Command Interface ERS for more
details.

The POTs for the commards currently in the system can be
displayed using the DISPLAY_COMMANO_INFORMATION command. This is
documented In the nonstandard command section of this document.

fUDcll.AD

SMOD
SCHAR
$ClOCK
SDATE
$.F Xl E
SF NAME
SINTEGER
SN .AME
$ORO
Sf(EAl
$STR ING
SSTRlEN
$$ TRRE P
SSUBSTR
SUNIQUE
ST IME
SVAR
SSPECIFIED
$5 ET _C OUNT
$VAlUE_COUNT
$RANGE
$PARAMETER_L 1ST
SP ARAHETER
SSTATUS
SCONOI TI ON
SSEVERITY
SP ROCE 5S OR

unchanged
unchanged
unchanged
unchanged
unchanged
unchanged
unchanged
unchanged
unchanged
unchanged
unchanged
unchanged
unchanged
unchanged
unchanged
unchanged
unchanged
unchanged
unchanged
unchanged
unchanged
unchanged
unchanged
unchanged
unchanged
unchanged
unchanged

Cycle q, October 1982

NOS/VE Cycle 9 Helpful Hints

2.0 COMMAND INTERFACE STATUS
2.3 COMMAND FUNCTIONS

2-4

10126/82

--
SJ08
$P ROGRAH
$RI~G

CQ!!maQi1~

SET_LINK_ATTRIBUTES
LOGIN
LOGOUT
SET_PASSWORD

unchanged
unchanged
new

unchanged
unchanged - *1
unchanged
unchanged

*1 The family name of the Job doing the submit will be used as
the default fami'y name on batch jobS. The default for Jobs
submitted from NOS wilt be family SSYSTEM. This effectively
means that whenever NCS/VE Jobs are submitted from NOS the
tami I, parameter is required.

Ca.JD!I!ans1

REQUeST_TERMINAL

C.AJD!I.lOA

SET_FILE_ATTRIBUTES
CO PY _FIl E
DISPLAY_FILE
COMPARE_F IlE
DISPLAY_FILE_ATTRIBUTES
SK IP _T APE

c.,Q.mm.lll~

GET_FILE
REPLACE_FILE

unchanged

unchanged
unchanged
unchanged
unchanged
unchanged
unchanged

unchanged
unchanged

Cycle 9, October 1982

NOS/VE Cycle 9 Helpful Hints

2.0 COMMAND INTERFACE STATUS
2.1 PERMANENT FILE MANAGEMENT

2-5

10126/82

_____ 8 ___ _

CR EA TE_FIlE
AT TACH_f Il E
DELETE_FILE
CHA~GE_CATAlOG_ENTRY
CREATE_FILE_PERMIT
DELETE_FilE_PERMIT
CR EAT E_CATALOG
DELETE_CATALOG
DELETE_CATALOG_PERMIT
CREATE_PERMIT_CATALOG
DI SPlAY_C.ATAlOG
DISPLAY_CATALOG_ENTRY
SET_WORKING_CATALOG

tQJB!lanIJ

PR DC 1 PROCE NO
SE T_COMMAND_lIST
OISPLAY_COMMAND_lIST
REPEAT/UNTIL
WHIlE/WHIlENO
CREATE_VARIABLE
DELETE_VARIABLE
8t OC K I B L ac KEN 0
lOOP/lOOPENO
FORI FOREND
IF/ElSEIF/ELSE/IFENO
CYCLE
EX IT
WHEN/WHENENO
CONT INUE
CANe EL
INCLUDE_FILE
COLLECT_TEXT
DISPLAY_VALUE
EXIT_PROC
ACCEPT_LINE
INCLUDE_LINE
CREATE_FILE_CONNECTION
DELETE_FIlE_CONNECTION
DISPLAY_FILE_CONNECTION
change HCS variable
display HCS variable

unchanged
unchanged
unchanged
unch.anged
unchanged
unchanged
unchanged
unchanged
unchanged
unchanged
unchanged
unchanged
unchanged

unchanged
unchanged
unchanged
unchanged
unchanged
unchanged
unchanged
unchanged
unchanged
unchanged
unchanged
unchanged
unchanged
unchanged
unchanged
unchanged
unchanged
unchanged
unchanged
unchanged
unchanged
unchanged
unchanged
unchanged
unchanged
unchanged
unchanged

Cycle 9, October 1982

NOS/VE Cycle 9 Helpful Hints

2.0 COMMAND INTERFACE STATUS
2.9 INTERACTIVE COMMANDS

2-6

10126/82

~~ ______ M __ _

~g.lIAQd

RESUME_COMMAND
TERMINATE_COMMAND
SE T_ T ERMINAl_ATTR IBUT ES
DISPLAY_TERMINAL_ATTRIBUTES
esc-e
esc-I
esc-j
esc-t
esc-x

unchanged
unchanged
unchanged
unchanged
new - 1*
new - 1*
new - 1*
new - 1*
new - 1*

*1 These commands are entered with the 3-key sequence:
escape_key, character, carriage_return. The characters have
the following meanings:

e perform "dlsplay_Job_status" command
I perform "display_'og 10" command
J perform "dlspl ey_Job_status atl" command
t discard atl unprocessed, typed-ahead Input
x terminate Job, but do not disconnect

C.il.lJm~D.d

CREATE_OBJECT_LI8RARY
DISPLAY_NEW_LIBRARY
SELECT_DISPLAY_OPTION
ADD_MODULE
RE PL AC E_MODUl E
COMBINE_MODULE
CREATE_MODUL E
BIND_MODULE
CREATE_PROGRAM_DESCRIPTION
DELETE_MODULE
CHANGE_MODULE_ATTRIBUTE
SATISFY_EXTERNAl_REfERENCES
REORDER_MODULE
GENERATE_LIBRARY
DISPLAY_DBJECT_lIBRARY
COMPARE_OBJECT_LIBRARY
QUIT
eI to II Conversion

unch.anged
unchanged
unchanged
unchanged
unchanged
unchanged
unchanged
unchanged
unchanged
unchanged
unchanged
unchanged
unchanged
unchanged
unchanged
unchanged
unchanged
unchanged

Cycle 9, October 1982

NOS/VE Cycle 9 Helpful Hints

2.0 COMMAND INTERFACE STATUS
2.11 USER SERVICES

2-1

1012.6/82

NN_NWWN_W ___ W ________ NWNN_W _______ w ______________ w ____ w ____________ _

~~uDI.an"

DISPLAY_lOG
DISPLAY_MESSAGE

C.AmlaDd

He S JMROUTE

2.13 f.&ilG.&Ar:1_flE'UIlrlti

c'tuDman.d

SET_PROGRAM_ATTRIBUTES
DISPLAY_PROGRAM
E.XECUTE
"n ameca II"
TASK/TASKEND
TERMINATE_TASK
WA IT
SET_DEBUG_RING
DISPLAY_ACTIVE_TASKS

u.nchanged
unchanged

removed

unchanged
unchanged
unchanged
unchanged - *1
unchanged
unchanged
unchanged
unchanged
unchanged

*1 Warning - "name ca.t" works only for Sel procedures unless a
SETFA command has been issued to speci fy that the
FILE_CONTENTS are OBJECT and the fILE_ORGANIZATION is DATA or
LIBRARY. The SETFA ccmmand must be reissued every time the
fi Ie Is brought over from NOS. The CONVERT_OBJECT_FIlE.,
GET_OBJECT_FILE, and GET_OBJECT_LIBRARY nonstandard commands
Issue the appropriate SET_FILE_ATTRIBUTES command and are
therefore recommended.

2.14 JjJa_HAti'GEt5.E~I

C2.B1!B.n~

SU 8M I T_J DB
DISPLAY_JOB_STATUS
TERMINATE_JOB
PR INT _FILE
TE RM INATE_PR INT
DISPLAY_PRINT_STATUS

unchanged
unchanged
unchanged
unchanged
unchanged
unchanged

Cycle 9, October 1982

NOS/VE Cycle 9 Helpful Hints

2.0 COMMAND INTERFACE STATUS
2.15 NON STANDARD COMMANDS

2-8

10126/82

N ____________________________________ M_N ___ NH ________ ~ _____ N_N _____ _

The following commends provide 8 nonstandard means of
performing v~rlous frequertly performed functions. They may be
superceded in subsequent builds by standard commends and
capabi titles.

DELee

The purpose of this coftmand is to delete all entries from the
specified catalog. This includes subcataloQs and the files they
contain.

de.ete_cataloQ_contents (catalog=<cata'og)l
[status=<status variable)]

catatog:c: This parameter specifies from which catalog atl
files are to be deleted. Omission wit. cause
the current working catalog to be used.

status: See ERROR HANDLING.

The purpose of this ccmmand Is to display task statistics for
a't currently active tasks in a job .• The following information
is displayed.

task name
execution time ~se
number of page faults

display_active_task [output-(flle)l
[status~<status variable)]

outputJo: This parameter specifies the file to which the
task statistics is displayed. Omission will
cause SOUTPUT to be used.

Cycle 9, October lQS2

2--q
NOS/VE eye.e 9 Helpful Hints

10/26/82

2.0 COMMAND INTERfACE STATUS
2.15.3 DISPLAY_SYSTEM_DATA : DISSD ~_N~N_NNN_N_N~N __ N_N ______ N~_* __ N ___ N_N ___ N_N ___ NNN_N_NNNNN_MNNM ___ _

The purpose of this command is to display system page fault
statistics and system monitor request statistics.

dl sptay_system_dat a Cdi sp lay_opt ion=page_fau I ts: pf
:morlto,_requests:mr:a.1

[dlsplay_format=lncremental:l:totaI1tl
[ou tp ut=<f ile>]
lstatus=<status variable)]

display_option:do: This parameter specifies which
statistics are to be displayed. The
following options are allowed:

em i S5 i on

- display the page
fault statistics.

- display the
monitor
statistics.

will cause All
used.

sys tem
request

to be

display_formattdf: lhis parameter specifies whether a

a ut put 10:

status:

<llsplay of the all statistics recorded
so far (total) or only those statistics
recorded since the last
dlsplay_system_data command
(i ncr em en t a I) s hou I d be dis p J aye d.
em I 5 S Ion wi' Ie au s e incrementa' to be
used.

This parameter specifies the file to
.. h i ch the s ys te m da taw i I I be
(Isplayed. Omission wil' cause SOUTPUT
to be used.

See ERROR HANDLING.

The purpose of this command is to display the following Job
related statistics:

Cycle 9, October 1982

NOS/VE Cycle 9 Helpful Hints

2.0 COMMAND INTERFACE STATUS
2.15.4 DISPLAY_JOB_OATA : DISJO

2-10

10126/82

__ • ___ ~~~~_~~ ______ N ___ N _________ N ___ N ____ N ________ N ______________ M_

time I n Job mod e
time in monitor mode
count of page 1~ operations
reclaimed pages
neM pages 8ssig~ed
working set size
count of ready tasks

display_Job_data [display_option=Job_datal
Cdisplay_format=incrementa':i:total:tl
[output::(flle)l
rstatus=<status variable)]

dlspla,_optJon:do: This parameter specifies which
statistics are to be displayed. The
following options are allowed:

Job_d at a - dis play Job re tated data.

[lmlssJon will cause
used.

to be

dlsplay_format:df: This parameter specifies whether a
display of the all statistics recorded
so far (total) or on'y those statistics
recorded since the last dlsplay_job_data
command (Incremental) shou'd be
displayed. Omission will cause
incremental to be used.

output:o: This parameter specifies the file to
khich the Job data will be displayed.
(mission wi II cause SOUTPUT to be used.

status: See ERROR HANDLING.

The purpose of this co.mand Is to display current informatjon
about a NOS/VE command. The parameter names, abbreviations,
allowed values and known problems for a command, as supported In
the current system, can be determined. This is a nonstandard
comm9nd and w111 be replaced by the he'p utility sometime in the
future.

display_command_information command_name-(name>:a"
[utillt,_name-create_obJect_library:

Cycle 9, October 1982

2-11
NOS/VE Cycle 9 Helpful Hints

10126/82

2.0 COMMAND INTERFACE STATUS
2.15.5 DISPlAY_CDMMAND_INFOR~ATIDN : DISCI
MM_M _________ M ________ M ___ N_

col:source_code_utillt,:scu:systemJ
(display_optlonzparameter_description_table:

pdt:notes:names:help]
[output=(file reference)]
(status=<status variable)]

command_name:cn t This parameter specifies the name of the
command about which lnformation is to be
d 1 sp I ayed.

utillty_name:un: This parameter specifies which utility the
co~mand belongs to. Omission will cause
SYSTEM to be used.

output: 0:

status:

This parameter specifies
display being requested.

the type
The option.s

of
at e:

parameter_descrlptlon_tabJe:pdt - selects
a display of the parameter descrip­
tion table used by the command when
executed.

notes - selects a disp'ay of any known
problems with the command.

nawes - selects a display of the command
n a me s for aut ia I t y.

help - selects a display of the co~mand
Interface description of the command.

Omission will cause POT to be used.

This parameter specifies the fIle to which
information wi I' be displayed. Omiss ion
wi II cause SOUTPUT to be used.

See ERROR HANDLING.

CONOF

The purpose of this command is to get a NOS/VE object file
produced on NOS and to convert it to an object flte suitable for
processing by the NOS/VE loader or object code maintenance
comman ds.

convert_obJect_flle to-<flle reference>

Cycle 9, October 1982

NOS/VE Cycle 9 Helpful Hints

2.0 COMMAND INTERFACE STATUS
2.15.6 CONVERT_OBJECT_FIlE : CONOF

2-12

10126/82

--___ HHHN ____ HH __ H _____ _

rtr om =<name>]
[user =<name>]
[status=(statu5 variable)]

to:t: This parameter specifies the NOS/VE file name on
which the converted object file is to be written.

from:r: This parameter specifies the name of the NOS file to
be converted. This is the permanent file name as
defined In the NOS file system and can be UP to seven
characters In length.

Omission wil' cause the permanent file name of the
TO parameter to be used.

user:u: This parameter specifies the NOS user identification
of the owner of the 'ite. This parameter Is only
neccessary If the tl Ie Is in a catalog other than the
user ~ho was specified by the most recently issued
SET_LINK_ATTRIBUTES command.

status: See ERROR HANDLING.

The purpose of this command Is to get a previous'Y converted
NOS/VE object file from the NOS side and sets the appropriate
file attributes that will allow the object file to be used by
NOS/VE.

get_obJect_flle to=<file reference>
(fr 0 m 11: < n am e>]
(user=<name)l
[status=<status variable>]

to:t: This parameter specifies the NOS/VE file name of the
obJectfi Ie.

from:f: This parlmeter specifies the NOS file name of the
object file. This Is the permanent file name as
defined in NOS and can be up to seven characters In
length.

Omission wll t cause the permanent file name of the
TO parameter to be u-sed.

user:u: This parameter specifies the NOS user identification

Cycle 9, October 1982

NOS/VE Cycle 9 Helpful Hints

2.0 COMMAND INTERFACE STATUS
2.15.7 GET_OBJECT_FIlE : GETCf

2-13

10126/82

•• N~~ •• NN.NN •• NN __ • __ N •••••• _.N.N_ •••• _NN.N •• NNNN __ NNN._ ••• NNN.N.N __

of the owner of the file. This parameter is only
necessary If the fi Ie Is In a catalog other than the
user who was specified by the most recently issued
SET_LINK_ATTRIBUTES command.

status: See ERROR HANDLING.

GETOl

The purpose of this command is to get a previous', created
NOS/VE object library 'roK the NOS side and set the approprjate
fi Ie attributes that wi J lall ow the object library to be used on
NOS lYE.

get_obJect_llbrary to=<f i Ie reference>
[from: <name)]
(user: <name)]
[status=<status variable)]

to:t: This parameter specifies the NOS/YE file name of the
object library.

from:': This parameter specifies the NOS file name of the
object file. This Is the permanent file name as
defined in NOS and can be UP to seven characters In
length.

Omission wi t I cau.se the permanentf 11 e name of the
TO parameter to be used.

user:ut This parameter specifies the NOS user identification
of the owner of ·the file. This parameter Is only
necessary if the file is in a catalog other than the
user who was specified on the most recently issued
SET_LINK_ATTRIBUTES command.

statusl See ERROR HANDLING.

OISOT

The purpose of this co.mand is to produce a formatted display
of the object text contained In an object file or object library
produced on NOS/VE.

Cycle 9, October 1982

NOS/VE Cycle 9 Helpful Hints

2.0 COMMAND INTERFACE STATUS
2.15.9 DISPLAY_OBJECT_TEXT l 0150T

2-14

10126/82

____________________________ • _____________________________ N ________ _

[output=(file reference)]
(status=(status variable)]

f.le:': This parameter specifies the object file or object
library containing the object text to be listed.

Qutputlo: This parameter specifies the file to which the
display is to be written.

Omission wIll cause the file SOUTPUT to be used.

status: See ERROR HANDLING.

The purpose of this co.mend is to get a previously created Stu
source library from the MrS side and set the appropriate file
attributes that will allow the source library to be used on
NOS/VE.

get_souree_llbrary to-<f i Ie reference>
[from=<name)l
[use r·= <n sme>]
(status=(status variable>]

to:tt This parameter specifies the NOS/VE file name of the
source Ilbrar)_

from:rl This parameter specIfies the NOS file name of the
source library. This Is the permanent file name as
defined In NOS and can be up to seven characters in
length.

Omission wi II cause the permanent fi Ie name of the
TO parameter to be used.

user:u= This parameter specifies the NOS user identification
of the owner of the file. This parameter is only
necessary If the 'lie Is In a catalog other than the
user who was specified on the most recently Issued
SET_LINK_ATTRlBUTES command.

status: See ERROR HANDLING.

Cycle q, October 1982

NOS/WE Cycle q Helpful Hints

2.0 COMMAND INTERFACE STATUS
2.15.11 EDIT_fILE : EDIF

2-15

10/26/82

_____ MM ____________________ MN ______________________________________ _

The purpose of EDIT_FILE is to initiate the execution of the
Stu editor on a text file. (For details see ARH3883.)

edit_file ledlf - edit lines ona source file. (procedure file
not necessarily In its final form)

2.15.12 JEDIT

flle=flle(source)
[result=fite(sourcel]
[Input-file reference 1
[output-file reference]
[status]

4!l!AUlls

$REQUIRED
SVAlUE(F IlE)
SCOMMAND
$OUTPUT

The purpose of this command Is to initiate execution of the
JEDIT editor built by Jack Bohnhoff. Anyone wanting information
about the editor should contact Jack.

Jedit from-<file)
[status=(status variable)]

from: f: This parameter specifies the fi'e to be
This file is rewritten after the
terminates.

status: See ERROR
Inter face.

2.15.13 DEBUG

HANDLING i n the NQS/VE

edited.
editor

Command

The prototype R1 NOS/VE debugger Is now available. Details on
how to use the debugger can be found in the HeYSER 180
INTERACTIVE DEBUG Exter~al Reference Specification and User's
Guide", Sunnyvale DeS number S4028.

Cycle 9~ October 1982

• t

• •

NOS/WE Cycle q Helpful Hints

2.0 COMMAND INTERfACE STATUS
2.15.14 SET_LINK_ATTRIBUTES ~ SETlA

2-16

10/26/82

NNNNNNNNNNNN_NN ___ NNM_NNNNNNN_N_NN __ NNNNN_NN_NM_NNN-NNMN ___ N_N_HHN_N

The SET_LINK_ATTRIBUTES command Is the same as documented in
the HOS/VE command Interface Mith the exception that the CHARGE
and PROJECT parameters are optional (and in fact not useful in
the current environment since we disable that feature on the NOS
side).

Cycle 9, October 1982

3-1
NOS/VE Cycle 9 Helpful Hints

10126/82

3.0 PROGRAM INTERfACE STATUS

The 'status' column Indicates whether the procedure is
unchanged from the previous build, modified from the previous
but Id or not aval table in this build. footnotes are numbered
within each seetlon.

et.Q" .I.clJ.,t.~
ClPSSCAN_PARAM_lIST
ClPSTEST_PARAHETER
Cl P$GET_KEYWORO
ClPSGET_SET_COUNT
ClPSGET_VAlUE_COUNT
CLP$ TEST _RANGE
Cl P$GET_ VALUE
ClP$CREATE_VARIABLE
ClPSOELETE_VARIABLE
ClPSREAD_VARIABlE
ClPiWRITE_VARIABLE
ClPSSCAN_COMMANO_FIlE
ClP$END_SCAN_COMMANO_fIlE
ClP$SCAN_COMMAND_lINE
ClPSCREATE_fILE_CONNECTION
ClPSOElETE_FILE_CONNECTION
ClPSPUSH/POP_UTIlITY
CLP$GET_COMMANO_ORIGI~
ClPSGET_DATA_lINE
ClPSSCAN_PROC_DEClARA1ION

er:.A~C ihlt..t:

OSPSFORMAT_MESSAGE
QSP$SET_STATUS_ABNORM~l

OSPSAPPENO_STATUS_PAR'METER
OSPSAPPEND_STATUS_INTEGER

unchanged
unchanged
unchanged
unchanged
unchanged
unchanged
unchanged
unchanged
unchanged
unchanged
unchanged
unchanged
unchanged
unchanged
unchanged
unchanged
unchanged
unchanged
unchanged
unchanged

unchanged
unch:anged
unchanged
unchanged

Cycle 9, October 1982

NOS/VE Cyc'e 9 Helpful Hints

3.0 PROGRAM INTERfACE STATUS
3.3 RESOURCE MANAGEMENT

3-2

10126/82

_N~NNN __ N_~N ____ N_N _____________________________ N __ M_M _____________ _

et.~sc • .dut..

RMPSREQUEST_MASS_STORjGE
RMPSREQUEST_TERMINAl

unchanged
unchanged

AI I terminal attributes can be specified on the
RMPSREQUEST_TERMINAl call but only the fotlowing are operational:

o au to_i nput
o transparent_mode
o prompt_fite
o prompt_string

Files assigned to a terminal device can be accessed via the
following BAM requests:

o Af1PSOPEN
oAMPSGE T _NE XT
o Af1P$GET _DIR,ECT
o AMPSGET_PARTIAl
o At1PSPUT_NEXT
o AMPSPUT_DIRECT
o AMPSPUT_PARTIAl
o AMPSClOSE
oAMPSREWINO
o AMP$SKIP
o AMP$SEEK_OIRECT

et.g~lshu:. :a

PHPSEXIT
PM P$ EX ECUTE
PMPSTERMINATE
PMP$AWAIT_TASK_TERMIN~TION
PMPSMODULE_TABlE_ADDRESS
PMP$ENTRY_POINT_TABlE_ADORESS
PMP$PUSH~TASK_DEBUG_MCDE
PMPSSET_TASK_DEBUG_MODE
PMPSTASK_DEBUG_MODE_ON
PMP$SET_OE8UG_RING
PM P$ DE BUG_RI NG
PMP$CHANGE_OEBUG_LIaRA~Y_lIST
PHP$PO'_TASK_DEBUG_MOVE

unchanged
unchanged
unchanged
unchanged
unchanged
unchanged
unchanged
unchanged
unchanged
unchanged
unchanged
unchanged
unchanged

Cycle 9, October 1982

NOS/VE Cycle 9 Helpful Hints

3.0 PROGRAM INTERfACE STATUS
3.5 PROGRAM COMMUNICATION

3-3

10126/82

_____ •• ___ N __________________ _

eL,AGCs!Ut..e

OSPSAWAIT_ACTIVITY_CDMPlETION
PM P$ DE f IHE_QUEUE
Pf1PSREMOVE_QUEUE
PHPSCDNNECT_QUEUE
PMPSOISCONNECT_QUEUE
PHPSSEND_TO_QUEUE
PMPSRECEIVE_FROM_OUEUE
PMPSSTATUS_QUEUE
PMP$STATUS_QUEUES_OEFINEO
PMPSGET_QUEUE_LIMITS

!t..GkAdlitc

PMPSESTABLISH_CONDITION_HANDLER

PMPSOISESTABlISH_CONO_HANOlER
PMP$CAUSE_CONDITION
PMPSCONTINUE_TO_CAUSE
PMPSTEST_CONDITION_HA~OlER
PMPSVAlIDATE_PREVIOUS_SAVE_AREA
PHPSESTABlISH_DEBUG_OFF
OSPSSET_STATUS_fROM_CONOITION

e.t.AAi AiJu:,.c

PMPSGENERATE_UNIQUE_NAME
PMPSGET_TIME
PMPSGET_MICROSECONO_ClOCK
PMPSGET_TASK_CP_TIME
PMPSGET_DATE
PMPSGET_USER_IDENTIFICATON
PMPSGET_ACCOUNT_PROJECT
PMPSGET_JOB_NAMES
PHPSGET_JOB_ID
PMP$GET_JOB_MODE
PMPSGET_PROGRAM
PMPSGET_TASK_IO
PMPSMANAGE_SENSE_SWITCHES
PMPSGET_OS_VERSION

unchanged
unchanged
unchanged
unchanged
unchanged
unchanged
unchanged
unch.anged
unchanged
unchanged

Added support of detected
uncorrected error
unchanged
unchanged
unchanged
unchanged
unchanged
unchanged
unchanged

unchanged
unchanged
unchanged
unch:anged
unchanged
unchanged
unchanged
unchanged
unchanged
unchanged
unchanged
unchanged
unchanged
unchanged

Cycle 9, October 1982

NOS/VE Cycle 9 Helpful Hints

3.0 PROGRAM INTERFACE STATUS
3.7 PROGRAM SERVICES

3-4

10126/82

M_MNM ____ • _____________________ • _____________________________ N _____ _

PMPSGET_PROCESSOR_ATTRIBUTES
'"PSDEFINE_DEBUG_ENTRY
PMPSGET_DE8UG_ENTRY
PMPSHODIFY_OEBUG_ENTRY
P"'$REMOVE_DEBUG_ENTRY

et.~Gf:d!.lt.i:

PMP$LOG
PMPSlOG_ASCII

Sequential Access
Byte_Addressable Access
Record Access
Segment Access
V_System Specified
V_Us e r S p e c i fi e d
U_System Specified
U_User Specified
F_System Specified
F _ Us e r S peel f led
AMP$OESCRIBE_NEW_fIlE
AMPSFILE
AMP$GET_FIlE_ATTRIBUTES
Af1PSFETCH
AHPSSTORE
AMPSCOPY_FIlE
AMPSRENAME
AM PSRE TURN_F IlE
AM P$OPEN
AHP'$CLOSE
AHP$fETCH_ACCESS_INFORMATION
AM P$SKIP
AMPSREWIND
AHPSWRITE_END_PARTITICN
AMPSGET_NEXT
AM PSGET _DIRE CT
AM PSGET _PART I Al
AMP$PUT_NEXT
AMPSPUT_DIRECT
AMP$PUT_PAR.TIAL

unchanged
unchanged
unchanged
unchanged
unchanged

unchanged
unchanged

S.t.a.t.u.~

unchanged
unchanged
unchanged
unchanged - *1
unchanged
unchanged
unchanged
unchanged
unchanged
unchanged
del et ed
unchanged
unchanged
unchanged
unchanged
unchanged
unchanged
new name
unchanged
unchanged
unchanged
unchanged
*2
unchanged
unchanged
unchanged
unchanged
unchanged
unchanged
unchanged - *3

Cycle 9, October 1982

NOS/VE Cycle 9 Helpful Hints

3.0 PROGRAM INTERfACE STATUS
3.9 FILE MANAGEMENT

3-5

10126182

___ N ___ N ___ N

AHPSSEEK_DIRECT
AMPSGET_SEGMENT_POINTER
AMP5SET_SEGMENT_EOI
AMP5SET_SEGMENT_POSITION
AMP$SET_lOCAl_NAME_ABNORMAL
AMP$SET_FIlE_INSTANCE_ABNORMAL
AMPSACCESS_METHOD
AMPSFETCH_FAP_POINTER
AMPSSTORE_FAP_POINTER

unchanged
unchanged
unchanged
unchanged
unchanged
unchanged
unchanged
unchanged
unch.anged

*1 Segment access If a segment access file is written and an
AMPSSET_SEGMENT_EOI is not issued to record the EOI, EOI
remains zero. The hlg~est page referenced is not yet used as
the default EOI. This particularly affects those who wish to
make heaps permanent because EOI Is always zero for a heap.

*2 AMP$REWIND The WAIT parameter on the procedure call Is not
supported.

*3 AMP$PUT_PARTIAl PUT_PARTIAL with the TERM_OPTION =
AMCSTERMINATE does OQ1 act as a put_next If a preceding START
Has not i s.sued.

e.LA'CgUt.J:
PF PSDEFINE
PfPSATTACH
PFPSPURGE
PFPSCHANGE
PF PSPERM IT
PFPSDELETE_PERMIT
PFPSDEFINE_CATALOG
PFPSPURGE_CATAlOG
PFPSPERMIT_CATAlOG
PFPSOElETE_CATALOG_PERMIT

MMPSADVISE_IN
MMP$ADVISE_OUT
MMPSAOVISE_OUT_IN
MMPSWRITE_"OOIFIEO_PAGES
MMPSCREATE_SEGMENT
MMPSDElETE_SEGMENT
MMPSSTORE_SEGMENT_ATTPIBUTES
MMPSFETCH_SEGMENT_ATTRIBUTES

S..tJ.lu~
unchanged
unchanged
unchanged
unchanged
unchanged
unchanged
unc-hanged
u nch.anged
unchanged
unchanged

unchanged
unchanged
unchanged
unchang·ed
unchanged
unchanged
unchanged
unchanged

Cycle 9, October 1982

3-6
NOS/VE Cycle 9 Helpful Hints

10126/82

3.0 PROGRAM INTERFACE STATUS
3.11 MEMORY MANAGEMENT .
______ M ___ --- _ _____________ _

MMPSVERIFY_ACCESS
MM PiFR EE
MMPSlOCK PAGES
"MPSUNLOCK_PAGES
MMPSfETCH_PVA_UNWRITTEN_PAGES

3.12·S,I&IlSIltS_fAtILIII

SfPSESTABlISH_STATISTIC
SFPSENABLE_STATISTIC
SfPSOISABLE_STATISTIC
SFPSOISESTA8lISH_STATISTIC
SfPSEMIT_STATISTIC
SfPSEMIT_SYSTEM_STATISTIC

3. 13 IHlfJ1Atllfi_fAClLlIl

IfPS TE RM IN AL
IfPSFETCH_TERMINAL
IfPSSTORE_TERMINAL
IFPSGET_DEflT_TERMINAl_ATTRIBUTES
IFPSGET_TERMINAL_ATTRIBUTES
IFPSAOVANCE

unchanged
unchanged
number of locked pages per
segment restricted to 32
unchanged

unchanged
unchanged
unchanged
unchanged
unchanged
unchanged

unchanged
unchanged
unchanged
unchanged
unchanged
new - *1

*1 Only the option IFC$AD~ANCE_ALl_QUEUEO_OUTPUT is supported.

3.14 ti.QSLllf_ElC.f..f.IlOtiS

The following summarizes the exception code ranges currently
assigned to NOS/VE. These code ranges represent a finer
breakdown than the one specified In the SIS for internal NOS/VE
development purposes. However, it is important to remember that
only the product Identifiers documented In the SIS may appear in
error messa'ges.

Co mmon M odu J es
Common Code Generator

9,000 - 9,999
8,000 - 8,999

Cycle 9, October 1982

NOS/VE Cycle 9 Helpful Hints

3.0 PROGRAM INTERFACE STATUS
3.14 NOS/VE EXCEPTIONS

3-1

10126/82

_______________ N ______________ N ________________________ NN_N_N ____ N_N

Exception Code

1 - 158,999
159,000 - 159,999
160,000 - 169,QQ9

160,000 - 163,999
164,000 - 164,999
165,000 - 165,999
166,000 - 166,999

170,000 - 179,999
180,000 - 189,999
190,000 - 199,999
200,000 - 209,999

200,000 - 204,999
205,000 - 205,999

210,000 - 219,999
210,000 - 210,999
211,000 - 211,999
212,000 - 212,999
213,000 - 213,999
214,000 - 214,QQ9
215,000 - 215,999
216,000 - 216,999
217,000 - 217,999
218,000 218,999
219,000 - 219,999

220,000 - 229,QQQ

221,000 - 221,999
222,000 - 222,999

230,000
240,000
250,000
260,000
270,000
280,000
290, 000
300,000
310,000
320,000
330, 000
340,000
350,000
360,000
370,000
500,000
510,000
520,000

- 239,999
249,999

- 259,9<)9
269,999
279,999

- 289,999
299,999
309,9Q9

- 319,999
- 329,999

339,999
349,999

- 359,999
369,QQ9

- 379,999
- 509,999
- 519,999

529,999

Product
Identifier

Reserved
Sy
AM
SA
IN
JF
SR
CL
JM
II
MM
MH
MM
as
os
MT
10
10
OM
Ml
IF
TM
TM
JS
PF

ST
PU
PM
RM
Of
AV
Ie
RH
ac
os
MS
IF
US
SF
CM
HU
NA
AA
AG
Al

Product Name

System Core
Basic Access Methods
Bas i c A cc ess
l oc a I N am e M 9 r
Job File Mgr
Conversion Services
Com man d l an g u age
Job Management
loader
Memory Management
M on ito r ley e I
Task leve I
Ope ra t i ng System
OS
EXEC
MS 1/0
Tape I/O
Device Management
Memory link
Interactive
TM Monitor
TM Task
Job Swappers
Permanent File
Man agemen t
Set Management
Permanent File Utilities
Program Management
Resource Management
Operator Facility
User Administrator
Interstate Communication
Remote Host facility
Object Code Utilities
Deadstart/Recovery
Maintenance Services
Inter acti ve fee iii ty
Use r Er fO rs
Statistics fae.
Configuration Management
Help Uti1ities
Network Access Method
Advanced Access Method
ALGOL
Assembly language

Cycle 9, October 1982

NOS/VE Cycle q Helpful Hints

3.0 PROGRAM INTERFACE STATUS
3.14 NOS/VE EXCEPTIONS

3-8

10126/82

____________________________________ NN_NNN ___ NNNN_NNNNN ________ NMNMN

530,000 - 539,999
540,000 - 549,999
550,000 - 559,999
560,000 - 569,999
570,000 - 579,999
580,000 - 589,999
590,000 - 599,999
600,000 - 609,999
610,000 - 619,999
620,000 - 629,999
640,000 - 649,999

AP
SA
CA
C8
Cy
FT
PA
Pl
SM
SC
DB

APl
BASIC
Conversion Aids System
COBOL
CYBll
FORTRAN
PASCAL (Wirth)
PL/1
Sort Merge
Source Code Utility
Debug

Cycle 9, October 1982

NOS/VE Cycle 9 Helpful Hints

4.0 DUAL STATE DEADSTART AND OPERATION

4-1

10126/82

The Arden Hills S2 devElopment lab contains 12 fHO units.

o FMD Unit 43 (Ch. 1, 21, 22)

This unit contains ~OS permanent files.

o FMO Unit 41 (th. 1, 21, 2Z)

This unit contains the following:

Files required to deadstart dual state Cyefe 5;4110 NOS
(5.3 plus changes necessary for Cycle 5), CTI, MSL, EI
binaries, and NOS Deadstart files.
It is also used as a temp device.

o FMD Unit 42 (Ch. 1, 21, 22)

This unit contains NOS permanent files.

o FMO Unit 44 (Ch. 1)

This Is another NOS PF device.

o FMO Unit 45 (Ch. 1)

Th j s un i teo n t 8 ins f II e s r e qui red to d e ads tar t d u a 1st ate
Cycle 7; NOS 5E55 deadstart file, CTI143PR, MSl143PR, and EI.
It Is also 8 NOS temp device.

The following devices are available for hands-on use: channel
1, 21, 22: unit 40; channel Z, 22, 31: units 44 and 45; channel
2: uni ts 40, 41, 42, and 43.

Cycle 9, October 1982

NOS/VE Cycle 9 Helpful Hints

4.0 DUAL STATE DEADSTART AND OPERATION
4.2 USER NAMES AND PERMANENT FILES

4-2

10126/82

NNNNNNNNNNNNNN_NNNNN_NN ___ N ___ N_NNNNNNNN_NN_NNNNNNN ___ N_NNNNNNNNNNNN

1) The convention used for creating user names on N05/VE is as
follows:
o Your user name wIll be your initials.
o Your password wi II be these 3 I etters fo II owed by the

letter I x'.
o You must see COMSCURCE (R.K. Cooper x3092) to be

as sign ed a user 1 nd ex

2) PF dumping and loading

You may use "SES.OUMPPf" on SN/IOI to dump your permanent
files to tape, and then load them onto your user name on A170
NOS using "SES.LOADPF". Documentation on hOM to use these SES
procedures and .. hat their parameters are is Included in the
SES User's Guide, or they can be obtained by typing:

SES,HELP.DUMPPF and SES,HELP.lOADPF.

The basic reference for this section is the NOS V2 System
Maintenance Manual (60459300), Section 5. The best specific
reference Is Example 13 on page 5-37 In that manual.

Using NOS 5.3, the analyst should do the following:

X.DIS.
SU 1,377717.
PURGE(SOURCE INA)
DE F "INE (5 OURC E)
MOOVAL(OP-S,S=SOURCE,FA)
DROP.

Next, the file SOURCE should be XEOITed with the following
directives:

O/AB ••• =I*
O/NF ••• =I*
D/OF ••• =I*
C/STANOARO/NORMAl/*
C/CMLI/CNVE/*

Cycle 9, October 1982

4-3
NOS/VE Cycle 9 Helpful Hints

10126/82

4.0 DUAL STATE DEADSTART AND OPERATION
4.3 CONVERTING VERSION 1 VALIDATION FILES TO VERSION 2 ~~.~ __ N~_N~ ___ ~ _______ ~_~ ___ .NNN_N. ___ N __________ N _______ NN_N ______ N

finally, after bringing UP a NOS V2 system, do the fol lowing:
(Note: An Idle family situation must exJst when the ISf commands
are given.)

X.DIS.
SUI,377777.
PURGE,NEWOUl,NEWNDZ.
OEfINE,NEWOUZ,NEWNDZ.
ATTACH,SOURCE.
MODVAltOP=C,I=SOURCE,SI,N=NEWDUZ,U=NEWNDZ)
RETURN(NEWOUZ,NEWHDZ)
ISF,R=NEWOUZ. (wIll release NEWDUZ If it Is fast-attach)
ISF,E=NEWDUZ.
DROP.

At deadstart time NOS will automatically load 7155-1x disk
controlware on one chan~el with controller type=FM (LBC CMRdeck
entry), and wil' automatically toad 7155-4x disk controlware on
any channel with controller type=HT (lSC CMRdeck entry). NDS/VE
supports both of those types of controllers. NOTE: It is not
possible to use 844 half-track controlware in this environment.

4.5.1 eTI AND CHECKING CENTRAL MEMORY

Deadstartlng 1170 NOS assumes some knowledge of CTI. eTI
stands for Common Test and Initialization. It Is software that
places an 800 series machine in a state such that it Is possible
to deadstart an operating system. CTI is used somewhat
ambiguously in the software community to Imply eTI and MSl
(Maintenance Software library). The MSl is a collection of
programs and data that includes such things as a subset of CMSE
(eybar Maintenance Software Executive) that enables one to load
controlware to controllers, look at CyaER 180 maintenance
registers, look at mlcrocodel etc. The MSl also contains
microcode that can be loaded by CTI. The MSl is actually an
operating system that runs Independently of NOS. An important
element of CTI/MSl is HIVS (Hardware Verification Sequence),
which Is a program that loads microcode, clears and checks

Cycle 9, October 1982

NDS/VE Cycle 9 Helpful Hints

4.0 DUAL STATE DEADSTART AND OPERATION
4.5.1 eTI AND CHECKING CENTRAL MEMORY

4-4

10126/82

--
central memory and tests sll 170 opcodes. If you are not sure
what the machine was used for (particularly the first hands on
user each morning) then the HIVS program should be run. This is
accomplished by:

1) deadstart to NOS/VE (unit 40 for 53, unit 45 for 52)

2l Enter 0 (operator Intervention)

3) Enter P (deadstart panel,make sure level 0 deadstart)

4) <BKSP)

5) Enter H (assure yourself that CS=YES to reload microcode)

t,-' <SK SP >

1) Enter V (verification sequence)

8) Hit (CR) at 'parameter display' to test eM & CP

When you see text that tells you that ferification Is complete
and a deadstart Is required, you are now ready to deadstart NOS.

4.5.2 NOS DEADSTART

See SectIon 3.3 of the Integration Procedures Notebook for
important NOS CMRDECK changes.
o Set the DIS panel to deadstart from the primary system disk.

This Is 844 pack P0345 for 9.1 and 844 pack P0367 for 9.2 and
subsequent systems.

o Push DIS button
o Ent er (CR)
o Enter date/time

~alt for deadstart to complete.

Note: The deadstart tapes DU91A and OU92A for 9.1 and 9.2
respectively are found In the area in the northeast corner of the
S2 lab where the tape cabinet is found.

Cycle 9, October 1982

NDS/VE Cycle 9 Helpful Hints

4.0 DUAL STATE DEADSTART AND OPERATION
4.6 NOS/VE DEADSTART AND I~STAlLATION

4-5

10126/82

___ N

o Enter DOWN,CH2. so NOS/VE can use the channel.

o Enter DOWN,CH32. so NCSIVE can use the channel.

o The following file must be available in your catalog on the
S2:

TPXXXK contains a NOS/VE deadstart Imaoe. This must be a copy of
the du a 1st ate de a ds tar t ima 9 e s a va i , a b I e f r om t 11 eli n k
pr ocedur es.

o If you've never deadstarted NOS/VE from the user number from
which you want to run or if you wish to change the current
parameter settings for your particular user number, then do a
SETVE. SETVE assumes the fi Ie TPXXXK is in your user number;
you do not have to do another SerVE If TPXXXK has changed
since the last time yOU ran. The general form of SETVE is:

where ffff Is an Identifjer of UP to 4 characters and un is
the user number to search first for fttes. 6 Is the number of
the system core command deck for the Arden Hi lis S2
configuration. ~.itQ1D"'l_S.QA"lt.v:lll"_C:g_~Q_1h~_'[.d~D_t:illis. __ S.3
~1!1 __ ~~~tL~~_tb~_~lA~~d_~hQ2_eA[.man=nt_!!1~_~a~~A_ In general
ffff and un will be the same, e.g. X.SETVE(OAH,UN-OAH,C=6)

.*Onl, ONE SErVE should be done for each user number and a
SETVE should NOT be done for ANY Integration user number
except by the Integration proJect.**

see SECTION 5.1 FOR MORE DETAILS.

o Bring UP dual state:

Nve ffff.

where rfff Is the Identifier specified In SETVE, e.g.
NVE INTI.

o B ri ng UP the Operator fa c i I J t y

Enter K,NVE.

NOS/VE Is currently generated and Initialized on both NOS
and NOS/VE. Atl source and object libraries that make UP the

Cycle q, October 1982

NDS/VE Cycle 9 Helpful Hints

4.0 DUAL STATE DEADSTART AND OPERATION
4.6 ~OS/VE OEADSTART AND INSTALLATION

4-6

10126/82

MR_. ________ • ______ • _______ • __________ .NN __________ N_. ____ N ___ N ____ _

NOS/VE system are produced on NOS and therefore must be
converted from their CI to II counterparts. Other parts of
instatl jng and Initial izing the system (e.g. building the
SSYSTEM catalog) are performed by command language procedures
on NOSIVE. Since the same system wit I many times in a closed
shop environment, it is advantageous to only perform the
conversion from CI to II a single time; save the results in
the NOS file system and then simply bring the files back
during deadstart.

The actual files that get installed and loaded on each
deadstart are determined by a command language procedure (the
system profile) interpreted on NOS/VE. Th.s procedure can be
modified by each site to initialize their NOS/VE environment
In the most suitable fashion. The process of building the
system profi Ie and of performing the CI to II conversions is
referred to as an installation deadstart and the process of
ex e cut j n 9 the system pro f i Ie and of fetch i n 9 previous I y
converted files from NOS and making them available in the
NOS/VE 'fi Ie system Is referred to as a deadstart. A single
command is available to perform both an installation deadstart
and a deadstart.

4.6.1 THE OS PROCED~RE

The purpose of this command is to perform an instellati on,
narmator recovery deadstart of NOS/VE. The defaults for
parameters are those most convenient for "closed shop"
d ea ds tar t s •

The procedure "br Ings up" the job log display on the left
screen where the progress of the procedure may be watched, and
the control point display on the right screen. Just before
the procedure completes it changes the left screen to display
the system log and writes to that tog the message:

t ____ Deadstart Completed ____ t

at which point the operator may enter commands.

ds [k i nd= i nstat' : nor Ira I : recover]
(get_products=<boolean)l
[echo=(boolean)]
[alternate_user=<NOS_user_name)l
[save_install_tiles=<boolean}l
(val tdate_users=<boolean}l
[quick_valldate=Ilst of <name>]

Cycle Q, October 1982

NOS/VE Cycle 9 Helpful Hints

4.0 DUAL STATE DEADSTART AND OPERATION
4.6.1 THE OS PROCEDURE

4-7

10126/82

__________ M ___ - ____________ M

[status=<status variable)]

kind k: This parameter specifies what kind 0' deadstart is
to be performed. Valid specifications are:

InstalJ : I - installation deadstart to be
The system libraries are built from
'iles.

performed.
CI object

normal: n - nor.a' deadstart to be performed. The
system Ilbr~ries are obtained from the results of a
previous installation deadstart.

recover: r - recovery deadstart. Just initiates system
tasks. Per~anent files are "recovered" from ~
previous run of the system.

Omission wltl cause a recovery deadstart to be
performed.

get_products: gp: This parameter specifies whether the object
libraries deflnlrg the current product set and SCU
libraries defining the source libraries are to be
installed. Valid specifications are:

true: yes: on - the products are to be instal'ed

fa.se : no oft - the products are not to be Installed

The list of products Installed on the Arden Hitls
closed shop S3 s~stem when get_products=ves Is specified
is given in the INSTAll_PRODUCTS section.

Omission will cause the product set to be installed.

echo: et This parameter specifies whether the commands shoutd
be echoed to the console during execution. Valid
specifications are:

true : yes on - echo commands

false : no ~ o'f - do not echo commands

Omission will cause commands not to be echoed.

alternate_user: au: This parameter specifies what NOS user to
check if the default NVE user does not have the needed
file. Any NOS user name Is a.lowed.

Cycle 9, October 1982

t
t

• •

4-8
NOS/VE Cycle 9 Helpful Hints

10126/82

4.0 DUAL STATE DEADSTART AND OPERATION
4.6.i THE DS PROCEDURE
____ H_H _______ H ___________ H_. ____ H __________________ •• __ H _____ HNNHH_

Oml 5S Ion will cause INT! to be used.

validate_users: YU: This parameter specifies whether to run
the Job that validates NOS/VE users. This parameter is
ignored for a recovery deadstart. Valid specifications
are:

true: yes: on - run the validation job

false: no : off - do not run the validation Job

o B-1 iss i on ttl i I I c aus e t he v al I da t ion Job to b e run.

quick_validate : qv: This parameter determines which users
will be validated by the validation Job if It is run.
When specified, t~is parameter gives a list of user names
to be validated in addition to the users: INTl, INT2,
DEVl, OEV2, REll, EVAL and RKC.

Om Iss ion \of i I I c au s e 8 I Ius e r s t 0 b e v al ida ted.

status: See ERROR HANDLING In the NOS/VE ERS.
NOTES

The get_source_libraries parameter has been removed. Source
libraries are now treated as products and their installation
Is now controlled by the get_products parameter.

The debug parameter has also been removed. later in this
document there is an explanation of how OS now handles
a b n or mal sit U 8 t ion s •

A condition handler is established for
any fautt. If something goes wrong
during the OS procedure, It will get
control, display the status, and let
the operator Interact with the OS
procedure. The operator can enter
commands to investigate and/or correct
the problem, resume execution of OS by
en t e r I n g CON T I NU E, 0 r abo r t 0 S by
entering EXIT_PROe.

Cycle 9, October 1982

4-9
NOS/VE Cycle 9 Helpful Hints

10126/82

4.0 DUAL STATE DEADSTART AND OPERATION
4.6.1 THE DS PROCEDURE N_~N.N _______ MNN ____ N _____ • ____________________ • ________ ---M _______ _

I, N, R

I only

N onl y

I, N, R

The procedure "brings up" the job Jog
display (on the left screen) where the
progress of the OS procedure may be
watched, and the control point display
(on the right screen).

System files are created from 170 CI
bin ar i e sfo r

CYFSRUN_TIME_lIBRARY
OSFSOPERATOR_lIBRARY
OSFSSYSTEM_lI8RARY
OSFSOPERATOR_COMHANO_LIBRARY
OSFSCOMMANO_lIBRARY

If save_instal._files=yes, the
binaries of the above files
replaced on the 110.

.11
are

System fl'es are accessed from 170,
these are the replaced II binaries
mentioned above.

Remote Host Output is started.

System and User Prologs and Epilogs
ar e h ui It.

The validation job is submitted and
system statistics are output.

If get_products=yes, the product set
and source Ilbrar i es are Install ed;
failed product set or source library
Installations will print a Job 'og.

Wait for validation job to complete.

RHINPUT, IFEXEC, DUMP_BROKEN_JOB tasks
are started.

Feedback capability set up.

sel task started.
Job • 09 pr1 nted.
The fol lowing message is output:

-- Deadstart Completed --

Cycle 9, October 1982

• 1

• •
I
t

NDS/VE Cycle q Helpful HInts

4.0 DUAL STATE DEADSTART AND OPERATION
4.6.1 THE DS PROCEDURE

4-10

10126/82

__ N_N_NN_N __ NN_NN_NNN __ N_NN_._N_N_N ____ NN_~ __ NN_NNNN ___ N-_NNNNNNNNHN

The biggest change to the OS procedure is in the product
set Installation (get_products=yes). A procedure cal led
INSTALL_PRODUCTS is used to install the entire product set
(product set and source libraries). In this procedure, a job
is submitted for each product, In each Job a GET_PPOOUCT Is
executed. The products are installed in the SSYSTEM.LIBRARY
catalog under the product name. The submitted Jobs can be
viewed on a right ~ display, the left K display shows the
processing of the OS procedure.

Upon Job completion, a success or failure message with the
Job name (reflecting the product being installed, i.e.
cylScompller for product cyfScompller - the CYBIt II Compiler)
is written to a status fi Ie (dsfSproduct_Job_status). The
contents of this file Is used to make sure a.1 the product
Jobs have completed before continuing with the OS procedure,
as wei' as the contents being displayed to the job log which
can be viewed by the operator.

If 8 product installation fal Is, several things happen:

A falture message with job name is written to the status
file, which will subsequently be displayed to the
operator.

T he Job log for th e f a I , e d pro due tin s t alia t ion wi' I be
printed, indicating the error.

At the end of the INSTAll_PRODUCTS procedure., if any
products have failed, the condition handler established
at the start of the OS procedure gets contro •• A status
message of "n product installations failed" is displayed
and a prompt fer operator Interaction occurs. The
operator at this point can attempt reinstallation of
failed products through the use of INSTAll_PRODUCTS or
Just continue with the OS procedure.

The INSTALL_PRODUCTS procedure can be used as an
independent command to do an Instal tatton/relnstallation at
the operator's discretion.

If get_products=yes, a II of the following wifl be
installed.

Cycle 9, October 1982

,t ,
• •

t
!

1
1

• t

4-11
MOS/VE Cycle q He'pful Hints

10/26/82 _. ___ ._. ____ N __ N_~--------.---------------.--------N--_____________ _
I

4.0 DUAL STATE DEADSTART AND OPERATION
4.6.1 THE OS PROCEDURE
--._ _.--

C170
Ell ..

cyfiic
·al·fol
scfol
sef cl

i ff ed i t
psf cl
aaf44d
aaf4dd
cbf 7dd
cbf 4dd
ceflib
cgflib
dbf lib
fcrlib
f.flib
fltf II b
m'flib
slftf lib
ttflib

osf pi I

osf sl

Pro duct Name
l'l~Q_fll.cl

CYfSCOMPIlER
AlFSOBJECT_lIBRAFY
SCF$OBJECT_lIB~ARY
SCFSCOMMAND_lIBRARY

IFFSEDITOR
PSFSCOMMAND_lIBRARY
AAF$440_lIBRARY
AAF$40D_l IBRAR Y
CBf$700_lIBRARY
CBF$4DO_l IBRAR Y
CCFSlIBRARY
CGFSlIBRARY
OBfSlIBRARY
FCF$lIBRARY
FlFSlIBRARY
FMFSlIBRARY
MLFSlIBRARY
SMFSlIBRARY
TTFSTEST_TOOl_lIBRARY

OSFSPRDGRAM_IN1ERFACE_LIBRARY

OSF$SOURCE_LIB~ARY

CYBIl II Compiler
180 Assembler
Source Code Utility
Source Code Utility
"stand-alone" command
library
Jack Bohnhoff's Editor
Produet Set Commands
AAM Library
AAM-Fortran Interface
Cob 0 I Com p i Ie r
Cobol Run-Time library
Common Compiler Modules
Common Code Gener3tor
Debug library
For t r an C om pi I e r
For tr an Run-T i me
File Management Utility
Mat h L i br ar y
Sort-Merge
Test Tool library - ACR
& Examine
Operating System Program
Inter face
Subset of Operating
System Source library

instal'_products [products=' 1st 0·' <name> alll
{status·status_Y8riablel

products: product tp: the names of one or products to be
1 ns ta I , ed.

Om I ss t on H J I I cause a I I pro ducts to b e instal' e d •

status: See ERROR HANDLING tn the NOS/VE Command Interface ERS

Cycle 9, October 1q82

• •

,
• • •

• • • •

4-12
NOS/VE Cycle 9 Helpful Hints

10126/82

4.0 DUAL STATE DEADSTART AND OPERATION
4.6.1 THE OS PROCEDURE HNHH _____ N_HNNNHNNN_NN_H __ NNANNN _________ HN_N __ NNN ____ NNNNNNNNNNNNN_

get_product product=<name>
fiJe=<170_file_name)
user=<170_user_name>
[catalog=(180_cataloQ_reference)1
[fi'e_contents=<name)l
[f i 1 8_S tr octur e= <n sme>]
(flle_processor=<name)l
[ring_attributes=list 3 •• 3 of <integer)]
[status=status_varlablel

pr oduct : p: name of the product

fi Ie : f: name of the 170 fl Ie that contains the 856 form
of th e pro d uc t.

user: uJ name of the 170 user that owns "file".

catalog: cJ name of the catalog in which the product is to
be installed.

Omission will cause $user to be used.

fi Ie_contents: file_cntent : fc: the value for the ·product
file's flte_contents attribute.

Omission will cause object to be used.

file_structure: fs: the value for the product file's
'ile_structure attribute.

Omiss ion wi II cause library to be used.

fi Ie_processor 1 fp: the val ue for the product filet s
file_processor attribute.

Omission will cause unknown to be used.

ring_attributes: ra: the values for the product fitets
ring_attributes attribute.

Omission ~ill cause (11,11,11) to be used.

status: See ERROR HANDLING in the NOS/VE Command Interface ERS

Cycle 9, October 1982

• t

• J

• t

• ,

• t

• •

4-13
NOS/VE Cycle 9 Helpful Hints

10126/82

4.0 DUAL STATE DEADSTART AND OPERATION
4.6.1 THE OS PROCEDURE NNN __ N _____ N __ - ___ N __ ._NNNN __ N _____ N_NN __ N _________________________ _

If you change any of the following decks you MUST use the
Installation deadstart from your own catalog (with files
CyaIlGO, XlJOCM, XlJOSl and XlJlIB), or you must use the
alternate_user parameter to specify a NOS catalog containing
the files (e.g. DEVI).

AVMUTIl eLMOP DMMDISA ICMClTIS ICHfAI ICMFAPC ICMFlSH ICMGET
ICMOPEN IeMPUT ICMWEOP IFMEXEC IIMA72H IIMOC2S IIMRlE

IIMRSE IIMRUM IIMRUS~ IIMTDEl DCMADO OCMBIM OCMBIM DeMeOl
DeMeO" OCMCPY OCMCRM DCHOEF OCMOEl OCMOlB DeMONt

DeMODt OCMEND DCMGEN OCMlCH OCMlMG OCMLP OCMHUR
OeMH? OCMOBJ OCMOFH OCMOMS OCMRCH DeMRED OCMREP OCMRMB

OCMSAT OCMSOl OCMVEL OCMVlU OCMVOL PfMDC PFMTAlt
PUM8CAT PUM8CYC PUMBFIl PUMBfO PUMBLST PUMBPF PUMBSET
PUMCDMN PUMCRAK PUMPURG PUMCRAK PUMIOBF PUMLIST PUMHISC
PUMPURG PUMRAll PUMRCAT PUMREC PUMREF PUMRFIl PUMRPF
PUMSTU8 RHMlMl RHMQAT RHMQOP RHMQRE RHMSFM USORT UTMDUR

UTMPCl UTHPCZ UTMPC3 UTMPC4 UTMPC5 UTMTSA UUSERl

4.6.2 EXAMPLE OF NOS/VE INSTALLATION DEADSTART

Type

K,NVE _
K.SETlA (your_un,NVE) your_password
K.GETF OS U1I:scat
K.DS INSTAll GP:NO AU-scat

4.6.3 EXAMPLE OF NOS/VE flNORMAl" DEADSTART

The Integration system has had the installation deadstart
run on It. Also the 'iles produced by the Installation
deadstart have been made semi-private and are found on the
catalog used In the NVExxxx ca'I_

Type (where oevi Is th e s sme as the xxxx in the NVEx xxx
call):

1<., N VE.
K.SETlA tOEVlfNVE) OEVIX
K.GETF OS
K.OS NORMAL

Cycle 9, October 1982

NOS/VE Cycle 9 Helpful Hints

4.0 DUAL STATE DEADSTART AND OPERATION
4.6.4 EXAMPLE OF NOS/VE RECO~ERY DEADSTART

4-14

10126/82

---------------_._--
4.6.4 EXAMPLE OF NOS/VE RECOVERY DEADSTART

This Is the kind of deadstart that should most frequently
be done In a "closed shop" environment and consequently Is the
one for which all the parameter defautts are oriented. It
presupposes that permanent file recovery has been successful.

Type (where DEVl is the sam~ as the xxxx in the NVExxxx
eall)l

K, NVE.
K.SETLA (DEV1,NVE) DEV1X
K.GETF OS
K.OS

4.6.5 EXAMPLE OF MINIMAL NOS/VE DEADSTART

The minimal deadstart shown below may be useful to OS
developers who need to get the system up quickly and do not
need the product set or all validated users.

Type

K,NVE.
K.SETlA (your_un,NVE) Jour_password
K.GETF OS U=scat
K.OS NORMAL GP:NO QV:your_un AU~scat

4.6.6 USE OF THE QUICK_DEADSTART COMMAND

This command is intended as a develop!8ent tool to
facilitate 'fast' deadstarts where recovery Is not needed;
indeed, i f th i scomma nd is entered LiU~O'~l!.~ __ l!Il!l __ Qgl __ .b.l
.Rlt.!2t.m~!1 when the system is brought down for whatever
reason. Specifying this command witl cause an installation
deadstart to take place. If the INITDO command is not
specified then a default yalue of 'VSNOOl' is used for the
system deadstart device. Use of INITDD wi'l allow setting the
deadstart devices identifier to any value. THIS COMMAND WIll
NOT BE ACCEPTED FROM A DEADSTART COMMAND FILE, SO 'O=Tt MUST
BE SPECIFIED ON THE SE1VE PROCEDURE TO PERMIT ENTRY Of THE
QUICKOS COMMAND.

Formats QUICKDS or QUICK_DEADSTART
Values: The defautt is false. Executing this command

causes this initial value to be toggled, thus executing this
command twice will cause the final value to be false.

Note: QUICK_TEMPLATE_LOAD does not exist now.

Cycte 9, October 1982

• • ,
•

NOS/VE Cycle 9 Helpful Hints

4.0 DUAL STATE DEADSTART AND OPERATION
4.7 NOS/VE INTERACTIVE FACILITY OPERATION

4-15

10126/82

___ ~ _____ N. __ • _____________ N ______________ ._ •• __ N ____ N ______ M __ MM __ _

4.7.1 OPERATOR INITIATION

To bring up the NOS/VE interactive facility do the
followi ng t

1)

2)

Bring up NOS/VE.

Bring up NAM

At the system

For 9.1/5F:
FCN,5,7700.
NAMV2.

console enter:

For 9·.2/5G:
E NA BlE, NAM, 2.
NAM.

With the 5G networks, a flashing request for a dump
tape wi II appe:ar, enabling the operator to dump a
previous network crash A!1lL bringing HAM t friends up
again. If you don1t want a dump enter ASSIGN,Jsn,71.
for the appropriate job.

3) If IAF Is not up at control point 1, enter:

For 9.1/51=: For 9.2/5G:
IAFV2. IAF.

4.7.2 OPERATOR TERMINATION

To terminate NOS/VE interactive any of the following may be
done:

This 1s the preferred method. To bring NOS/VE interactive
back up, you must first do a CFO,NAM.EN,AP=VEIAF.

C f 0, N AM • 0 I., N E •

Cycle 9, October 1982

• • • •

I
t

t
J

• 1

4-16
NOS/VE Cycle 9 Helpful Hints

10126/82

4.0 DUAL STATE DEADSTART AND OPERATION
4.7.2.1 Termination of 1 Series Networks - 9.1/5F
- ___ N __ _

This terminates the entire network including IAF,RBF, etc.

To terminate NOS/VE Interactive either or the following may
be done.

Preferred method:

K,NAM.
K.AP=NVF.
K.DI,AP=VEIAF.

To bring VEIAF beck up, you must do:

K,NAM.
K.AP=NVf.
K.EN, AP-VEI AF.

X.DIS.
IIPPAS.
DROP.

Second method:

I OLE, NAM.
IDLE,IAF. (Don't Idle IAF when IAFEX2 is executing

ora pp wi II hang.)

This terminates the entire network including lAF, RBF,
etc. and should be used only If you have ng_lnl~Qtl~D of
bringing VEIAF back up because the 170 and 180 sides of VEIAF
get out of synch when the network is brought down this way.

4.1.3 OTHER OPERATOR C~PA8IlITIES

To 10glca11, turn the printer on, under DSO enter:

ON, 33.
FORM, 33, TM, •

To send a "shutdown warning" to at I terminals logged on to
VE IAF do:

Cycle 9, October 1982

t
t

• ,
1 • • t

• •

• t

• • • •
t
I

t ,
• •

• • • • • •

4-17
NOS/VE Cycle 9 Helpful Hints

10126/82

4.0 DUAL STATE DEADSTART AND OPERATION
4.1.3 OTHER OPERATOR CAPABILITIES __ •••••••• _____ ••• _______ • _______ • ______ N_ •• ____ --•••• _. __ ••••• _ ••••

for 9.1/5F: For 9.2/5G:

K,NAM.
K.AP=NVF.
K.ID,AP-VEIAf.

To send a message to all terminals do:

For Q.1/5F:
CFO,NAM.MSG,ALl,mess3ge.

For 9.2/5G:
K,NAM.
K.AP=CS.
K.NPU=npuname,message.

npuname=SN1147 on the 52,
=SN1322 on the S3.

PASSON has the ability to record various types of
diagnostIc InformatIon. This capability is control led via
the sense switches at the PASSON control point. To turn a
sense switch on (off) at Job Jsn do:

where x Is the desired sense switch (1 to 6). The PASSON
default is all sense switches off. It wilt take a short
period of time before PASSON detects a change in a sense
switch and reacts to it. The sense switches current'y used
by PASSON are:

SHll~b_!

1
2
3

Network Trace
PASSON Logic Trace To Dayfile
Memory Link Trace To Dayfile

With the release of the Operator Facljlty Phase 1 several
changes to the NOS/VE (perating System wi11 occur that wi"
effect the users of the NOS/VE Operators Console. The
Operator Facility runs as part of the NVE control point. When
the request for K display appears on the NOS B Display, assign
the K Display to the NVE control point. The Operator Faclt tty
Is capable of displaying both a left and a right screen area
at the same time. If the operator wants both screens then

Cycle 9, October 1982

• t

• t

• • • t

• t

• t

4-18
NOS/VE Cycle 9 Helpful Hints

10/26/82

4.0 DUAL STATE DEADSTART AND OPERATION
4.8 NOS/VE OPERATOR FACILITY AND OPERATOR COMMANDS
__ N_N_NN ______________________________ N_N_N _________ • _________ N ____ _

type In KK. The contents of these displays are determined by
the commands entered by the operator.

The left screen is divided into four different areas. The
top most area Is the system header which contains the current
date and time, memory statistics, and an operator action
message if one Is posted. The operator action will include
the job sequence number of the owner of the message and
'message cancelled' If the message Is cancelled because the
task has terminated. The next line contains the first 64
characters of the operator action message (60 characters in
S t a nd a ton e) •

The next area of the screen is the main output area. This
area has the file name of OUTPUT. Any display command can
have its output directed to this area as wei. asan.y system
command.

The third area is towards the bottom of the screen. This
area Is two lines 'ong and contains the response area. This
wiJI contain error messages from system commands. The area is
cleared when the next operator typeln is entered at the
operator's console and received by NOS/VE.

The fourth area is the prompt area. This will contain the
status of the keyboard. If NOS/VE Is processing a command,
then the keyboard is 'ocked and a II type ins w II I be ignored.
When the keyboard is locked, the message 'data received by 180

keyboard 'ocked' wit' appear at the screen's bottom. When
the keyboard is unlocked then any data in the keyboard buffer
will be sent to NOS/VE. The bottom line Is the last line that
was processed by Operator Facility.

The right K Display has the file name OUTPUT_RIGHT. There
is only one area on the right screen therefore the main
display area Is 10 lines longer than the left screen area. If
a dayfile display or CP display is shown on the right screen
you will get more lines of information than on the teft
screen.

There are no default displays that come up automatically on
either output display area. It Is UP to the operator to
decide the display the operator wtshes to see. The only parts
of the display that co~e up automatically Is the system header

Cycle 9, October 1982

4-19
NOS/VE Cycle 9 Helpful Hints

10126/82

4.0 DUAL STATE DEADSTART AND OPERATION
4.8 NOS/VE OPERATOR FACILITY AND OPERATOR COMMANDS
_HNNNNHNHHNHHHNHHHH_NNHHNNHH ____ N_NNNNNNNNNNH_N_HNNNN_NNN __ NNNH __ N __

display and the prompt area for keyboard status.

The page width cf the screen Is 60 characters for
standalone and 64 characters for dual state. The character
set translation code Is the same as that for the current NVE
Subsystem control point. The escape code sequence for the
special characters to be typed has not changed. There are a
few differences in the processing of data by the Operator
Facility and NVE Subsystem.

1) 00 NOT end commands with a period. Periods are sent to
NOS/VE.

2) The NVE subsystem ccmmands that begin with an asterisk will
not be supported from the Operator facility control point.
If these commands are entered from the Operator facility
they will be passed on to Sel where an illegal command wilt
be issued.

3) Routing of console Job data to a specific job by the
tn-command t protocol wll I not be supported in dual state.
This feature should work in standalone but wilt not be
supported.

4) No type ahead - com.ands cannot be entered until the prompt
area shows that they are requested.

There Is one new command to replace the current display
commands. The entry pclnts for ldls, ldlsb, and Sdls have
been deleted. The new command is VEOISPLAY and has two
parameters. The options are listed below. The values in
paranthesis are the abbreviations. Note that this command
does not begin with an asterisk (*). This command will be
processed by Sel and create a new system control point task to
display it's data. The user can have the same display type on
each of the display areas, If the user so desires.

Command Name Ols~lay Type

Parameter N.ame

DISPLAY_OPTIONS
DISPLAY_OPTION (DO)

Screen Area

Parameter Name

OUTPUT (0)

Cycle 9, October 1982

4-20
NDS/VE Cye'e 9 He1pful Hints

10/26/82

4.0 DUAL STATE DEADSTART AND OPERATION
4.8 NOS/VE OPERATOR fACILITY AND OPERATOR COMMANDS
______________ • ___________________________ • _______________ HH_NHHN __ _

VEOISPlAY (VEO)

Parameter Values

DISPLAY_SYSTEM_LOG
JOB_lOG (Jl)
CONTROl~POINT (ep)

Parameter Values

OUTPUT
OUTPUT_RIGHT (OR)

The default file name for all displays Is OUTPUT.

The following is a brief list of commands to bring up NOSVE
Mith the Operator Faci tity Installed.

NVEffff. to bring up NOS/VE. (See Section 5)

KK. to bring up the K display on both screens.

K.VED Jl to bring UP the job log.
or
K.VED DISPlAY_OPTIONS-Jl OUTPUT=OUTPUT

to bring up the Job log using key word
identifiers.

K.VED CP OUTPUT_RIGHT

or

to bring up the control point display on
the right screen.

K.VEO OISPLAY_QPTIONSaCONTROl_POINT OUTPUT=OUTPUT_RIGHT
to bring up the control point display using

key word
identifiers.

K.xxx sene any command to NOS/VE.
•
•
•

to terminate NOS/VE.

Note: After the OS procedure has completed execution the
command to enter to br log down the system Is TERMINATE_SYSTEM,
not TERHINATE_SYSTEM_JCB. Yes, this Is the OPPOSITE of what
It used to be.

Cycle 9, October 1982

NOS/VE Cycle 9 Helpful Hints

4.0 DUAL STATE DEADSTART AND OPERATION
4.8.1 DELETE_JOB_QUEUE : DElETE_JOB_QUEUES : DELJQ

4-21

10/26/82

____ • ______ N_NNN ___________ ~. ____________ N _______________________ N __

The purpose of this command is to delete all fites from the
Job input subcatalog, the print subcataloQ or both. This
command is only allowed from jobs with operator and or system
privileges.

delete_Job_queue [queuE_name=input:output:alll
(status:(status variable)]

queue_name : qn: This parameter specifies from which
subeataloQs files are to be deleted. Specifying
INPUT will cause all files to be deleted from the
Job swap subcataloQ and the Job Input subcata'og.
Specifying DtTPUT wi" cause all files to be deleted
from the Job output subcatalog. Omission wit I cause
atl to be used.

status: See ERROR HANDLING.

The purpose of this command is to rebuild an entry in the
K no wn Job Lis t «K J l) from i n for mat ion i nth e Sy s t em Lab e I 0 f
the file representing the job being processed. This command
is to be used during the process of recovering the Input
queues during recovery deadstart.

rebui td_input_queue [nemea(name)l
[status=(status variable)]

name: nJ This parameter specifies the file name of the
file representing the Job. An attempt is made to
process the specified file within the catalog where
job input queues are known to reside.

status: See ERROR HANDLING.

The purpose of this command Is to rebuild an entry in the
K n 0 wn 0 u t put LI s t (K 0 l) fro min f or mat Ion ret a i ned i nth e
System label of the ft'e representing the output being
processed. This command is to be used during the process of

Cycle 9, October 1982

4-22
NOS/VE Cycle 9 Helpful Hints

10126/82

4.0 DUAL STATE DEADSTART AND OPERATION
4.8.3 REBUILD_OUTPUT_QUEUE : REBOQ
______ • __ N _______________ _

recovering the output ~ueues during a recovery deadstart.

rebuild_output_queue [name=<name)l
[status=<status variable)]

name: This parameter specifies the file name of the file
representing the output. An attempt is made to
process the specified flte within the catalog path
of where Job output queues are known to reside.

status: See ERROR HANDLING.

Through the system console, enter:

Type

x. 0 IS.
USE R, A, B.
GET,f i 1 ename.
where filename identifies the input file to be routed.
ROUTE,fllename,DC=lP,FC=RH.

In order to run NOS/VE in a dual state environment, certain
hardware configuration rules must be in effect. All storage
devices and channels that NOS/VE will request must be In a
'down' state in the NCS EST. For more information on the NOS
EST, see the NOS Version 2 Operator/Analyst Handbook,
60459310, Section 4. ~efer to the E display.

To run S2 SIN 104 in the standard configuration, channels 2
and 32 must be downed ~s shown below.

DOW H, CH2.
DOWN., CH32.

Cycle 91 October 1982

NOS/VE Cycle 9 Helpful Hints

4.0 DUAL STATE DEADSTART AND OPERATION
4.10.1 SYSTEM CORE COMMANDS

4-23

10126/82

_~N_NNN_NNNNN __ M __ MM_N~_N_NN __ ~ ___ N. ___ N~ _______ NN_NN_N~N_NN_~ _____ _

4.10.1 SYSTEM CORE COMMANDS

Configuration Management (CM) system core commands define
the system mass storage device. The commands are described In
detail in the NOS/VE Instal.ation Command Interface ERS,
Section 3. The eM system core commands define the hardware
configuration of the system device and the control fer
accessing the system device. An example for 52 SIN 104 is
shown here.

SElDCT $7155_1
SETDD 5685_11 40(8)

4.10.2 JOB TEMPLATE COMMANDS

During an installation deadstart, the Physical
Configuration Utility (PCU) and the Logical Configuration
Utility (LeU) must be run. The PCU is run to describe the
physical configuration that NOS/VE may access. The leU will
logicatly install aJ I or part of the physical configuration
and allow NOS/VE to access the equipment. Commands for both
uti lities are described in the NOS/VE Installation Command
Interface ERS, Section 2.

The system device wtlch was defined by the system core
commands must the defined via the PCU, using the same
controller and channel number. Additional devices may be
defined as long as the device is in a down state, and all
channels defined are also down. An example is listed here.

EXECUTE_TASK SP=MANAGE_PHYSICAl_CONFIGURATION
SET_MAINFRAME_DEFINITION MAINFRAME-S2
SET_DATA_CHANNEL_DEFINITION CHANNEl_NUM8ER=2
SET_DATA_CHANNEL_DEfINITION CHANNEL_NUMBER=18
SET_CONTROLLER_DEFINITION ELEMENT-eTI ••

PROOUCT_IDENTIFICATION=$7155_1 ••
SERIAL_NUMBERa2 CHANNEl_CONNECTION=CHANNEl2

SET_CONTROLLER_DEFINITION ELEMENT=CT2 ••
PRODUCT_IDENTIFICATION=$7155_1 ••
SERIAL_NUMBER=] CHANNEl_CONNECTION=CHANNEl18

SET_STORAGE_DEVICE_DEFINITION ElEMENT=FM040_A ••
PROOUCT_IOENTIFICATION=$885_11 SERIAl_NUMBER=1234 ••
UNIT_NUMBER=40(S) CONTROLLER_CONNECTION:CTl

SET_STORAGE_DEVICE_CEFINITION ELEMENT=FM040_B ••
PROOUCT_IOENTIFICATION=$855_11 SERIAL_NUMBER=3456 ••

Cycle q, October 1982

NOS/VE Cycle 9 Helpful Hints

4.0 DUAL STATE DEADSTART AND OPERATION
4.10.2 JOB TEMPLATE COMMANDS

4-24

10126/82

_N_N_~NN __ N_NNNNN_NN ________ N_N __ N_N ___ N ______ N _______________ N_N __ _

UNIT_NUMBER=40(S) CONTROlLER_CONNECTION=CT2
INSTAll_PHYSICAL_CONFIGURATION MAINFRAME=S2

QUIT

EXECUTE_TASK SP=MANAGE_lDGICAl_CONFIGURATION
INSTALL_LOGICAL_CONfIGURATION INClUOE=ALl

QUIT

4.10.3 MULTIPLE VOLUME CONSIDERATIONS

If a configuratlo~ is used defining multiple mass storage
yolumes, the execution of the PCU and LeU witl only permit
access to the syste~ device. In order to bring additional
volumes online, the leU must be run again. The user may want
to i nit i a I iz ear res h v o. um e • T 0 dot h i 5, us e t he LeU
subcommand INITMV. To add a volume to the NOS/VE set, i.e.
to al'ow NOS/VE use of the volume, use the leU subcommand
ADDMTS. An example is shown here.

EXECUTE_TASK TP=MANAGE_lOGICAl_CONFIGUATION
INITIAlIZE_MS_VOlUME ElEMENT=FMD40_B RECDRDEO_VSN='VSNOOZ'
AOO_MEHBER_TO_SET MEMBER_VSN='VSN002 f

QUIT

During a noninstal letion deadsta~t, an attempt will be made
to bring a'. logically configured yolumes online and
reactivate them. This means the above sequence need only
o c c ur w hen 8 n ew Y 0 I u mel s be i n g b r 0 ugh ton lin e the firs t
ti me.

Reference has been made to the NOS/VE Installation Command
Interface ER.S. To get a copy of this document on SIN 101,
enter SES,MAD.LISTNIH.

Support of 6-12 ASCII from the console (K display) causes
the following changes:

11
12 tt

It:lfUl

It
I)

lRAHSLAlfD_IO
[
]

Cycle 9, October 1982

4-25
NOS/VE Cycle 9 Helpful Hints

10126/82

4.0 DUAL STATE DEADSTART AND OPERATION
4.11 K DISPLAY ASCII
_____________ M ________________ M ________________ M _________ M_M _______ _

13 #; 1+ >
14 $ 1- <
15 (reversed I) 1= •
16 . 1* • (single quot e) .,
11 ? II I
18 { I, · •
19 } IA to IZ a - z (I ower cas e)
10 (underscore)

Mo s t 0 f the s t e psi i s ted her e aT e use d tog at her
Information for recovery problems, etc. If you do not wish to
do this, execute steps 0 and E only (EOD dump and NOS level 3
des ds tart).

A. Enter DR I at the MOO display.

B. Enter HP at the MOD display.

c. If IQU.FSl NOT s 0 OR IOU.FS2 NOT = 0 THEN do NOT enter
OU at the MOO display ELSE do enter DU at the MOO
dis play.

D. Press deadstart ~utton .nd perform EOD:

1) Mount scratch tape (ring In) on a 9-track drive.

2) Push DIS button.

3) Select U (utilities) display.

4) S e I ec t E (EOD) d i sp I a y.

5) Set channel (S2=13).

b) Set ECUU (S2=01uu)

E = equipment

Cal for 67X drives, 2 for 66X drives

uu = unit number of the tape drive to be used.

7) Answer "dump number" with a CR.

Cycle 9, October 1982

NOS/VE Cycle 9 Helpful Hints

4.0 DUAL STATE DEADSTART AND OPERATION
4.12 EOD AND OSDI INFORMATION

4-26

10126/82

________________________________ N _____________________ N_NN ____ M __ N __

8) Answer "non zero inhibits rewind" with a CR.

9) Answe r ttch anne I con tro I wa re" wi th a CR. WaLnlDjjJ!
if this step Is omItted, 0501 canot process the
dump tape.

E. Per fo r m a I eve I 3 NOS d e ads tar t (Sa e S ec t i on 4. 14).

F. If you are running on the 53, enter the following at the
console:

X.DIS.
USER,INTl,INTlX.
GET,DKPDFS/UN·JlG.
BEGIN"DMPDFS •
• ..
DROP.

This Is a procedure to dump several dayf •• es associated
wIth the NVExxxx Job and are needed along with the EOD tape to
adequately debug a NOS/VE hang.

Some of the crashes that NOS/VE encounters wi II cause
NOS/VE to terminate such that the operator wil' notice the
K-display which requests that a K.*RUN. be entered. Before a
K.*RUN. is entered the EOO should be performed.

To create a listing of the EOO tape, type SES,INTl.DSDI See
the procedure's HELP documentation for parameter
descriptions.

C170DSOI Information can be found in Chapter 10 of the NOS
SYSTEM MAINTENANCE Manual.

A170 DSDI info can be found in document ARH3060 -- GID for
A170 NOS/S2.

o Bringing down dual state:

K~NVE.

Cycle 9, October 1982

NOS/VE Cycle 9 Helpfu,. Hints

4.0 DUAL STATE DEADSTART AND OPERATION
4.13 NOS/VE TERMINATION

4-21

10/26/82

--
o If not a normal ter.lnation

K.*RUN.
K.*ENOlST.
K.*ENORUN.

Before leaving the ~achine, it is necessary to bring NOS
down. I'f NOS has crashed, a level 3 deadstart must be
attempted even if the cnl, reason is to bring NOS down. To do
a I ev e I 3 d e ads tar t :

1) Push DIS button

2) S e I ec t "0" display

3) Select "PH display

4) Enter 1=3

51 Enter feR)

b) Enter d at el time

If a dump is desired but a crash has not occurred STEP.
should always be entered before pushing the deadstart button.
After the dump has been taken a leye1 3 deadstart should be
performed.

To bring NOS down, do the following:

1) Enter:

CHE
The screen .. i I' dl.sp' 8Y:
CHECK POINT SYSTEM.
Enter: carriage return

2) Make sure no mass storage device has a checkpoint
rquested. To do this, enter: E,M. If the display shows
there are no "C·s in the status field, then all devices
are checkpolnted and you may continue.

3) Enter:

Cycle 9, October 1982

NOS/VE Cycle q Helpful Hints

4.0 DUAL STATE DEADSTART AND OPERATION
4.14 A170 NOS SHUTDOWN

4-28

10126/82

_~HN~HNNHNN ____ NNNNN_N_NHHNN_NNN_NNN_NNNNN __ NN_NN_N_NH ___ M_NN_H __ NNN

STEP.

4) Push deadstart button.

Cycle 9, October 1982

5-1
NOS/VE Cycle 9 Helpful Hints

10126/82

5.0 RECOVERY OF NOS/VE PERMA~ENT FILES

The general format of the SETVE command is

ffff Is a string of no more than four characters. SETVE
appends rftf to 'NVE' to construct the name of a
procedure file which, when invoked, wi" deadstart
NOS/VE. The default is TST.

un specifies the user number from which TPXXXK is
attached. ~n Is the first catalog searched for
other files used in deadstarting and terminating
NOS/VE. The default Is INTl.

c specifies thE deadstart command deck to be used when
deadstarting NOS/VE. The function served by the
deadstart command deck is analogous to the function
served by the CMRDECK of NOS. Currently supported
values for c and their respective uses are:

1 Arden fl11s 53 SIN 02 open shop/hands-on time
3 Arden ~llls 53 SIN 02 closed shop
6 Arden Hills S2 SIN 104 open shop/hands-on time
10 Sunn.yv8le 52 closed shop installation
40 Sunnyv~le S2 closed shop continuation

The default is set In the file CMOSI. Currentl,
the default is 6. Wa~nlD~!_S2~~lt~lQg __ t~~ __ ~n __ 1b~
AU.l!l __ l:lll1~ __ S.l __ 1Il1!1 __ dAS.1!.,g~_thA_~aSl~.E_21:.tm.aQ.en1
!l!.c_ll.~ • .1L_

b specifies an alternate catalog to be searched for
the various files used in deadstarting and
terminating NOS/VE. The default Is INTI.

d is used to indicate that the system core command
processor should accept commands from the console.
Specifying OcT In the SETVE command allows the

Cycle 9, October 1982

NOS/VE Cycle 9 Helpful Hints

5.0 RECOVERY OF NOS/VE PERMANENT FILES
5.1 SETVE FORMAT

5-2

10126/82

________________ NN __ N_N _______ N ______ N __ ~ ___ N ______________________ _

operator to enter commands from the console after
processing the deadstart command deck. If the
operator wishes to Initialize the system device
and/or Instell a new version of NOS/VE, O=T must be
specified. The default is set in the file CMOSl.
Currently the default is D=F.

p specifies the password for the catalog indicated by
the un parameter. If this parameter is omitted the
password wl., be generated by appending an tx· to
the UN parameter.

c h spec I fie s thE 0 eta I c h a nn e t to be us e d for NOS / V E
disk 110. The default Is set in the fj Ie CMOSl.
Currently the default is 2.

vsn specifies the vsn of a deadstart tape. If thjs
parameter is used then NOS/VE wi t I be deadstarted
from the tape specified. If it Is omitted, then
NOS/VE will be deadstarted from the permanent file
TPXXXK.

Earlier versions of NOS/VE required that two SETVE commands
be Issued if the system was to be installed and subsequentl,
recovered. The current system does not require this. The
only reason for Iss~lng two SETVE commands Is to provide a
deadstart procedure that does notrequire/permit operator
I n t er v e n t Ion.

It should be noted that once the SETVE command has been
issued, it need not be issued again unless •••

1) There is a need to change one or more of the parameters
specified In SET~E.

2) The command fi Ie, NVEffff, generated by the SETVE
command is purged from the system.

Two examples of SeTVE usage and subsequent NOS/VE deadstart
are given below. The first example shows a "hands on" user
working with recovery. The second Illustrates these concepts
for a typical NOS/VE closed shop. This writer hopes that the
reader will find both examples useful and i I. uminating.

I. A "hands on" user

Cycle 9, October 1982

NOS/VE Cycle 9 Helpful Hints

5.0 RECOVERY OF NOS/VE PERMANENT FILES
5.2 SETVE USAGE

5-3

10126/82

NNNNNN_NNN_NNN_NNNNMNN __ NNNN_NNNN __ NNN ___ N __ N ____ NN __ NNNNNN_NMMMMMNN

The command file NVERSD is built and installed In NOS
by typing

Severa' of the choices of parameters are worth
noting.

1) By specifying the VSN parameter the user has built
a command file that will deadstart the system
directly from the tape produced by NVESYS.

2) The user In this example has specified deadstart
command deck 6 (e paramet.r) and has allowed the
NOS/VE disk 110 channel (ch parameter) to default
to 2. Ore concludes that the user is running on
the Arden Hil.s 52.

3) The user has specified OaT. This is important.
The deadstart command which triggers installation
of a recoverable system cannot be read from a
deadstart command deck. It must be entered from
the console at deadstart time. Specifying D=T
allows the operator to enter commands from the
console.

NDS/VE Is deadstarted by typing

NVERSD.

at the console.

The user brings up the K display by typing

Presently, the deadstart command deck is displayed
and the user Is prompted for Input. The deadstart
command deck used in this example looks like this:

USEe?
USEIP
SETOCT
SETOO

S2CFIG
EMPTY
$1155_1
$885_12 32

The user types

K.INITOO VSN001.

Cycle 9, October 1982

NOS/VE Cycle q Helpful Hints

5.0 RECOVERY OF NOS/VE PERMANENT FILES
5.2 SETVE USAGE

5-4

10/2bl82

___ N ___________________________________ N _________ N _____ N ___________ _

K.GO •.

The system accepts the commands and instal Is and
deadstarts NOS/VE.

Arter the system comes down, via either control 'ed
termination or a crash, the system can be recovered (if
necessary) and redeadstarted by typing

NVERSO.

When the deadstart command deck is displayed, the
user types

K.GO.

This will cause NOS/VE to be deadstarted without
Initializing the system device.

II. A typical "closed shop"

Two command files, NVEClSH and NVEINST, are created
by typing

X.SETVE(ClSH,UN=ClSH,B=DEVl,C=40,CH=1)
X.SETVE(INST,UN=ClSH,B=OEV1,C=lO,CH=1,D=T)

One notes tha t

1) Closed shop is deadstartedfrom a TPXX')(K file in
the ClSH catalog.

2) Specifying O:T, for NVEINST, causes deadstart to
pause for operator Intervention.

3) Using DCF deck 40 for continuation suppresses
redundant (and possibly damaging) reexecution of
the configuration prolog.

A normal deadstart is used when bringing UP NOS/VE at
the beginning of closed shop or following a system
failure. The operator, in this example, types

NVEClSH.

NOS/VE will recover (If necessary) and deadstart.
When recovery runs, the operator must respond to 8

request for Input from the MAHle utility. See note 4 at
the end of this section for more information.

Cycle 9, October 1982

NOS/VE Cycle 9 Helpful Hints

5.0 RECOVERY OF NOS/VE PERMANENT FILES
5.2 SETVE USAGE

5-5

10126/82

NNMNMNNNN __ N ____ N_N_NNN __ NMN __ MNM ___ M ____ N_NN ___ NN_N __ N_N __ N_NM ____ _

If it is necessary to reinitialize the system device,
or If the installation is upgrading to a new version of
NOS/VE, the operator keys

NVE INST.

This causes deadstart to pause and wait for operator
input when deadstart commands are being processed.
There are two cases requiring discussion here. The
first is the case of upgrading to a new and compatible
version of NOS/VE. The second case is used only when it
Is necessary to reinitialize the system device.

The first case Involves the Installation of a new
version of NOS/VE. In order to Install a new version of
the system. the old system must have been idled in an
orderly way. A new system cannot be installed if,
following a crash, the system being superceded was not
recovered. AssuRing everything in the old system is
tidy, .nd the file systems are compatible, the operator
keys

K.USECP EMPTY.
K.SETSA INSTAll_JOB_TEMPLATES 1.
K.GO.
when the system displays the deadstart command deck and
prompts for input. The new system is Installed, the
file system is preserved, and deadstart proceeds.

The second case amounts to an installation
deadstart. This should be used only with full knowledge
that any flies which may have existed on mass storage
prior to this deadstart, ~111_~~_~14~tl~ __ lQtA __ ~b!lxl~D
hl:_l.t.

An Installation deadstart wi II be required if

1) This Is the Inlt lal installation of a recoverable
version of NOS/VE.

Z) If the 'ile systems of the system being
and the system being superceded
compatible.

i nstat 1 ed
are not

3) If the file system has been damaged beyond the
possibility of recovery.

An installation deadstart Is effected by typing

Cycle 9, October 1982

5-6
NOS/VE Cycle 9 Helpful Hints

10126/82

5.0 RECOVERY Of NOS/VE PERMA~ENT FILES
5.2 SETVE USAGE
____________________________ NN _______ N _________ N ___ N __ _____________ _

K.INITDD VSN001.
K.GO.

when the deadstart command deck is displayed and the
operator Is prompted for input.

NOTES:

1. The CMOSl file used to deadstart NOS/VE must have
the OEBUG2 flag set to TRUE. When NOS/VE is
deadstarted, the catalog specified by the UN
parameter is first in the search order for CMDSl,
followed by the catalog specified by the B
parameter.

2. See Section 3.3 of the Integration Procedures
Notebook for other information about the CMOSl
f II e.

3. If NOS/VE crashes and a dump is desired (in the.
context of our second example)

i. Type du at the MOO
"WRITING IMAGE
Immediately. The
COMPLETE" should
I ate r.

console. The message
FILE" should appear
message "IMAGE FILE
appear a few moments

II. Push the deadstart button.

III. Take the EOD dump.

Iv. Do a Jevel 3 NOS deadstart.

Alternatively the operator can skip step if
she/he Is sure to redeadstart NDS/VE after step
Iv. In this event the system wil' detect that the
image file was never created, will create one, and
will recover from it.

4. A recovery deadstart which is under the control of
a SETVE command In which O=T was specified wi II
pause in t~e recovery system with the message
"OPERATOR INTERVENTION BEfORE RECOVERY BEGINS".
The system is executing the logical configuration
utility at this point. In order to exit this
utility and allow recovery to proceed the operator
types K.QUIT (no period). For more details on the
use of the leU see Section 4.9 of this document

Cycle 9, October 1982

NOS/VE Cycle 9 Helpful Hints

5.0 RECOVERY OF NOS/VE PERMANENT FILES
5.2 SETVE USAGE

5-7

10126/82

W __ NNNN_NN ___ NNN ___ NN ____ NNN •• NNNN __ N_N __ • _______________ • _____ ._._.

and the
ERS.

NOS/VE Installation Command Interface

Cycle 9, October 1982

6-1
NOS/VE Cycle 9 Helpful Hints

10126/82

6.0 SYSTEM CORE DEBUGGER

The System Core debugger provides a set of capabilities
Intended to assist In debugging the operating system.
Services provided by the debugger are task oriented: selection
of tbe tasks to be debugged must be made via debugger
subcommands. No tasks wl11 be under control of the debugger
unless they are selected. The selection capability allows any
number of tasks to be debugged simultaneously; from one task
to all tasks in the system. Obviously a capability this
powerful must be used with some care. The System Core
debugger uses the debug hardware to provide these
capabilities.

6.1 SlSllEIHHi

The purpose of this command is to initiate execution of the
system core debugger. This command can be issued from the
deadstart command fite or as a command in any job.

s ys de bu g

This command has no parameters; all Information the
debugger requires is provided via subcommands.

The system core debugger can also be invoked from the MOO
console. The format of the command 1st

00 n.sysdebug

where n Is the Job ordinal of the desired Job. The debugger
Is brought up in the Job monitor task of the Job. All system
core debugger subcommands are available, but must be prefixed
by the MOD command DO.

The system core deb~gger can also be brought up (from the
MOO console) by specifying a global task id. The format of
the command Is:

00 n.tdebuQ gggggg

The value of n is ignored, and the value gggggg specifies the

Cycle 9, October 1982

6-2
NOS/VE Cycle 9 Helpful Hints

10126/82

6.0 SYSTEM CORE DEBUGGER
6.1 S YSOE BUG
___ ~~ _____ N •• __ • _____ • __ ~ __ _

NOS/VE global task id (3 hex bytes) of the task to bring the
debugger up In. If the task Id Is Invalid, then the command
will be ignored.

<name> It: 1-8 character breakpoint name
<condition) 1:= REAO:WRITEIRNI:SRANCH:CAll:OIYFlT:ARlOS:

AROVFL:eXOVFl1EXUNFl:fPlOS:fPINOEF:INVBOP
<base> ::= process virtual address
<offset> :t: Integer
(length) :t: integer
<fr ame> : t= 1 •• 100
<count> ::= 1 •• 10000
(regld) :t= X:A:P
(regno) :t= O •• 15:0 •• 0F(16)
<value> :t= Integer
<time) :t: 1 •• (2**31)-1
<vstrlng> ::= 'charstrlng'
(datatype> ::= HEX:ASCII:ASC:OEC
<change_count> :t: 1 •• 8
<selector> :t: FUll:AU10:SAVE

Within the descriptions which follow, optional parameters
are enclosed In brackets. Defau.t values for optional
par am e t ers are a I so de f i ned •

6. 3.1 SE lEe T

The purpose of this subcommand is to select the tasks in
which the system core debugger Is to be active. When the
debugger is first called, it is not active in any task. To
use the debugger therefore, it Is necessary to select the
tasks in which it is to besct ive.

select (selection option) [(ring number> : <active job list
ordinal>]

selection_option: This parameter specifies one of 8

series of selection options used to control the
tasks in which the debugger will be active and some

Cycle 9, October 1982

NOS/VE Cycle 9 Helpful Hints

6.0 SYSTEM CORE DEBUGGER
6. 3.1 S E L EC T

0-3

10126/82

-~¥-~-------------------------------------¥---------¥---------------
other debug options. The selections are remain in
effect until they are explicitly changed with
subsequent SELECT subcommands. Valid selection
options are:

(righttleft> - This selects the screen for the debug
display. The display stays active when the screen
Is switched.

<Jobmonitor:noJobmonitor> - This selects whether or
not to debug job monitor tasks.

<user:nouser> - This selects whether or not to debug
user tasks (i.e. those that ate not job
monl tor s).

(highting) - This specifies the highest ring in
which debug traps wi 11 be recognized. Traps
occurring in rings above this selection will be
ignored.

<Job:nojob> - This enables or disables debugging for
the jot at the specified active Job list
ordinal. The system Job has an active Job list
ordinal of zero.

(alljobs:noJcbs> - This activates or deactivates
debugging in all jobs.

The Jnltlal selections are: RIGHT, NOSTEP,
NOJOSMONITOR, NOUSER, HIGHRING=3, NOJOBS.

6.3.2 BREAKPOINT B

The purpose of this subcommand is to select a program
I n t er r u p t w hie his tot a k e p , ace up 0 n 0 C cur r en ceo f a
specified condition within a specified virtual address range.

breakpoint <name> <condition> [(base)] [<offset>] [<length)]

The <name> Is any user supplied name for identifying the
breakpoint. A maximum of thirty two breakpoints can be
selected. When a trap occurs, the <name> of the breakpoint
w h i en c au :se d the t rap is dis p I aye d.

The base parameter is required when specifying a new
breakpoint name; offset and length specifications are optional

Cycle q, October 1982

NOS/VE Cycle 9 Helpful Hints

6.0 SYSTEM CORE DEBUGGER
6.3.2 BREAKPOINT : 8

6-4

10126/82

_NNNN __ N_N~ ____________________________ • ______ ~ ____________________ _

in this case. When adding a new condition selection to an
existing breakpoint, base, offset, and length parameters may
not be specified.

B3se, offset, and length parameters define the desired
virtual address range: <base> + (offset) yields a
first-byte-addressJ first-byte-address + (length) -1 yields a
last byte address.

De f au I t par am et er va lues:

(offset>: 0
< length)' 1

6.3.3 REMOVE_BREAKPOINl : RB

The purpose of this subcommand Is to deselect a prevlous'y
selected program inte

remove_breakpoint <name> [(condition>]

If only the name parameter Is specified, al' conditIons
8:ssociated with the breakpoint are deselected and all evidence
of the breakpoint Is removed. If the condition parameter Is
specified, onl, that condition is deselected; however, if the
specified condition is the only condition selected, ai'
evidence of the named breakpoint Is removed.

The purpose of this subcommand is to provide a list of
currently selected breekp and associated conditions.

Its t_ b rea kp 0 I n t [<n ·ame)]

I , the n am epa r am e t e r i s spec J f led, i n for m at Ion t s
displayed for the named breakpoint only. If the name
parameter Is not specified, information is displayed for all
currently defined breakpoints.

Cycle 9, October 1982

NOS/VE Cycle 9 Helpful Hints

6.0 SYSTEM CORE DEBUGGER
6.3.5 CHANGE_BREAKPOINT : CB

6-5

10126/82

--
6.3.5 CHANGE_BREAKPOINT: CB

The purpose of this subcommand Is to change the virtual
address range of a prey' specified breakpoint.

change_breakpoint (name) (base> [(offset)] [(length>]

Base, offset, and length parameters define the desired
virtual address range: <base> + (offset> ,Ietds a
first-byte-address; first-byte-address + <tength> -1 yields a
last byte address.

o e f au I t p ar am e t e r ya I U E S :

(offset>: 0
<length): 1

The purpose of this subcommand Is to
rei e·want to stack frame associ at ed
procedure and its predecessor procedures.
Is now performed.

provide information
wi th an in terrup ted

Validation of PVA's

Information
consists of:

dlspt eyed for each selected stack frame

Stack frame number;
Current P-address of the associated procedure;
Virtual address of the start of the stack frame;
Virtual address of the stack frame save area.

trace_back (frame)] [(count)] [FULl:SHORTl

The frame parameter specifies the number of the first stack
frame for which informetion is to be displayed. Stack frame
number one is associated with the Interrupted procedure, stack
frame two is associated with the interrupted procedure's
predecessor, etc.

The module name provided on the traceback is usually
correct but not guaranteed.

The count parameter specifies the total number of stack
frames for which Infor.ation Is to be displayed.

Cycle 9, October 1982

6-6
NOS/VE Cycle 9 Helpful Hints

10/26/82

6.0 SYSTEM CORE DEBUGGER
6.3.6 TRACE_BACK : TB
"H~HNNMMM_MMM_M_H_NNM_NHHHMM __ HMHHN_HH_HHHMM_NH_N_NN.HNNNNNNNNNHNHHH

Default parameter valuEs:

<frame>: 1
<count>: 1

The purpose of this subcommand Is to display selected
Information from a specifi stack frame.

display_stack_trame [(frame)] [(selector)]

The frame parameter specifies the number of the stack frame
for which information is to be displayed. (Stack frame number
one is associated with the Interrupted procedure, stack frame
two is associated with the interrupted procedure's
predecessor, etc.)

The selector parameter Identifies a region of the specified
stack frame:

AUTO: Causes the automatic region of the stack frame to be
displayed.

SAVE: Causes the save area of the stack frame to be
displayed.

FULL: Causes both the automatic and save areas of the stack
frame to be displayed.

Default parameter values:

<frame): 1
<selector>: FUll

6.3.8 DISPLAY_REGISTER: DR

The purpose of this subcommand Is to display the contents
of a specified registe interrupted procedure.

display_register (regld) [(regno)] «datatype)l

Default parameter values:

<regno>: 0

Cycle 9, October 1982

NOS/VE Cycle 9 Helpful Hints

6.0 SYSTEM CORE DEBUGGER
6.3.8 DISPLAY_REGISTER : DR

6-7

10126/82

__________ ~ _________ ._N ______ N __ M_N_MN _______ N_M_N _______ M_M ___ N_N __

(datatype): HEX

The purpose of this subcommand is to display the contents
of a specified area of virtual memory. Validation of PYA's Is
now performed.

display_memory (base) {(length)]

Oefault parameter values:

(length): a

The purpose of this subcommand is to set a specified value
Into a specified loca of virtual memory for a specified number
of bytes. Validation of PVA's is now performed.

change_memory <base> <value> <change_count>

Default parameter values:

6.3.11 RUN

The purpose of this subcommand is to invoke program
execution after a selected p Interrupt has occurred.

run

The purpose of this subcommand is the same as the change
memory subcommand, that is, to change the contents of virtual
memory. It differs from change memory, however, in that It
wil I change the attributes of the segment to allow memory to
be written, and the~ change the attributes back to their
original values.

Cycle 9, October 1982

6-8
NOS/VE Cycle 9 Helpful Hints

10126/82

6.0 SYSTEM CORE DEBUGGER
6.3.12 SUPER_CHANGE_MEMORY : SCM
___ MN ________ _

The command format is the same as the change memory
subcommand.

6.3.13 FORMAT FMT

The purpose of this subcommand Is to set the system core
debugger into a mode where al I subcommand output is sent to a
permanent file. This Is done by having the task running the
debugger communicate with another task running in the system
job. It is this other task that actually creates and writes
the permanent fite. The entry point of this task is
OSP$BROKEN_JOB_OUMP_TASK. It will normally be Initiated by
the OS procedure. If it is notrunni ng, a diagnostic will be
Issued. This task will create successive cycles of the
per manent fi t e 'DUM? I in the $SYSTEM cats log. These fl I es
contain ASCII text data written in BAM variable records. The
parameter to this command Is a string which will be output as
the first line of the file.

format string

6.3.14 UNFORMAT UNFMT

The purpose of this subcommand Is to leave the output mode
established by the FORMAT command. Output will again be sent
to the operator console. At this point the permanent file
wi' I b ef Ius h e d to mass storage.

unformat

The purpose of this subcommand Is to display any monitor
faults present in this task. See the section titled 'NOS/VE
Processing of Job Mode Software Errors' for more information.

All monitor fault buffers are displayed in the hope they
wll. show some task history. If a given fault buffer is
Invalid the message -'ollowlng fault is not present" Is
displayed.

Cycle 9, October 1982

NOS/VE Cycle 9 Helpful Hints

6.0 SYSTEM CORE DEBUGGER
6.3.16 DISPLAY_XeS : OISXCB

10126/82

N_N __ _

6.3.16 DISPLAY_XeS: OISXCB

The purpose of this subcommand Is to display atl of the
fields of the current task's (i.e., the task running the
debugger) execution cortrol block.

The purpose of this subcommand is to display the xes of all
tasks runnino within t~e current job (i.e., the Job with the
task running the debugger). If the command is entered while
the debugger Is in format mode, then a full XCS is displayed,
otherwise just the task name, xes address and global task id
are displayed.

Cycle 9, October 1982

7-1
NOS/VE Cycle 9 Helpful Hints

10126/82

7.0 NOS/VE PROCESSING Of JOB MOOE SOFTWARE ERRORS

7.1 lfilaOllUt.Illlti

Tasks running in Job mode will occasional'y cause an error
which Is detected either by the hardware or NOS/VE monitor.
The action taken when an error like this occurs is controlled
by various system attributes. The purpose of this section is
to discuss the types of errors and the effect a given system
attribute will have upon the handling of the error.

1) BROKEN TASK: A broken task is a task
mechanism Is not able to function
monitor will attempt to repair the trap
a broken task fault to the task. The
broken task are:

in which the trap
correctly. NOS/VE
mechanism and send
specific cases of a

system error Job mode software has
declared the task to be
br ok en. (Th i si s a spec i al
case of broken task.)

monitor fault b~f'er fut. job mode errors are
occuring but are not being
processed by job mode.

traps disabled

invalid AO

8 job mode
occurred while
disabled.

error has
traps were

the task 1 s AO register was
Invalid.

UCR/MCR traps disabled UCR/MCR error occurred with
traps disabled.

2) Me R FA III T I Th • s e r ro r
hardware detected MeR

signifies that job mode caused a
fault. This may be caused by

Cycle 9, October 1982

NOS/VE Cycle 9 Helpful Hints

7.0 NOS/VE PROCESSING OF JOB MODE SOFTWARE ERRORS
7.2 TYPES OF ERRORS

7-2

10126/82

___ M_~_. __ . _______ ... _______ .. ____________ M _______ --.-_____________ _

software or hardware detected uncorrectabte error.

3) UNKNOWN SYSTEM REQUEST: This error signifies that Job mode
Issued a monitor request that Is either Invalid or cannot
be issued from the ring it was issued from.

4) SEGMENT ACCESS FAULTS: These errors signify that job mode
encountered or caused one of the following errors:

page fault for an address greater than EOI on a
read-only file (segment)

disk read error

These errors either originate in NOS/VE monitor or cause
the hardware to exchange to monitor. Depending on the values
of certain system attr ibutes, monitor will halt or reflect the
error back to Job mode as a monitor default.

It Is at this point that the system core debugger can be
activated. (See the derinl ti ono·f SYSTEM_DEBUG_RING in the
next section.)

The normal Job mode OS actions for these faults are:

broken task
MeR fault
invalid systew request
segment access

exit
cause condition
exit
cause condition

The following systel attributes can be set or displayed by
the SETSA and OISSA commands.

7.3.1 HAlTRING

If a broken task or MeR fault occurs at or below the value
of HAlTRING (P register ring number), NOS/VE monitor wi II halt
the system. Broken tasks occurring above HAlTRING wll I cause
a monitor fault to be sent back to Job mode.

Cycle 9, October 1982

NOS/VE Cycle 9 Helpful Hints

7.0 NOS/VE PROCESSING OF JOB HODE SOFTWARE ERRORS
7.3.2 SYSTEM_ERROR_HANG_COUNl

7-3

10126/82

__ NN _____ N.N_N ____ N _______ N_. _______ N _____ • ___ NN_N_N_N_N_N _____ NNNN_

This is the number of broken task errors allowed to occur
In any given task before that task Is considered a hung task.

If this attribute Is true, then an occurence of a hung task
wit I cause NOS/VE mcnitor to halt the system. If the
attribute is false, the task will be sent a signal to 'hang'
itself, i.e. to go into an infinite wait doing nothing. Jobs
with hung tasks wl.I have a *H tn the status field on the
operator CP display.

A hung task will also occur if any error happens in job
mode ring 1.

If an error (broken task, MeR faul t, unknown system
request, or segment access fault) occurs at or below the value
of this attribute (P register ring number), the system core
debugger will be invoked within the task. At that point in
time the task environment can be examined by using system core
debugger commands.

If the RUN command is issued to the debugger, the system
will take Its normal action for the specific fautt.

When the system core debugger is invoked by a fault at or
below SYSTEM_DEBUG_RING and the DUMP_WHEN_DEBUG attribute is
true, the debugger wi I I automat teally create a dump of the
task (see system core debugger command FORMAT). When the dump
is complete, normal fault action will take place. The
fol lowing system core debugger commands are executed during an
aut om a tic dum p :

FORMAT automatic dump data
TB 1 1000
DISMF

Cycle 9, October 1982

NOS/VE Cycle 9 Helpful Hints

7.0 NOS/VE PROCESSING Of JOB MODE SOFTWARE ERRORS
7.3.5 DUMP_WHEN_DEBUG

7-4

10126/82

-----_._----------_._---------_._-----._------------_.--_._.-----_ ..
DISXCB
OM 00300000000 10000(16)
OM 00400000000 100CO(16)
DM 00500000000 100(0(16)
OM 00600000000 10000(16)
OM OOFOOOOOOOO 100(0(16)
OM 01000000000 100CO(16)
OM 01100000000 100(0(16)
DISTE
UNFORMAT

Cycle q, October 1982

8-1
NOS/VE Cyete 9 Helpful Hints

10/26/82

8.0 STANO ALONE DEADSTART

A standalone deadstart
format, 1600 BPI dersity
procedure). To deadstart
following steps:

tape i sa 9- t r a c k , unlabeled, I
tape (produced by the NVESYS
In standalone mode, perform the

1) Set the deadstart panel for standard disk deadstart.

2) Perform an alternate deadstart to the NVE deadstart tape
using CTI. The eTI parameters on the 'pl display should
be set as follows

L = 0
C = ('C' parameter of the SETVE procedure)
o = <'0' parameter of the SErVE procedure

o = Y wher display Is true
o = Nwhen no display>

W14 = ('CH' parameter of the SErVE procedure)

3) The tape should move and eventually the message
"PROCEED" will appear on the fower left on the console.

4) Enter CR,Mx,BR=OCOOOOOOOOOOOOOO
zer os J)

where Mx Is Ml for Sl
H2 "for S2
M3 for 53

(Editor's not e: 16

This clears the lemory bounds register which Is set by th
deadstart.

5) Enter OR,P2 This displays the CPU registers. The SIT
should be changlrg; If not, give up_

6) At this point the system core is loaded and can be
patched. The commands to display and change memory are
documented In IPNDOC.

7) To start the system enter 55 The CPU registers should
spin) If they ever stop the CPU has halted.

8) Enter 00 to display the system dayf. Ie on the right
screen.

Cycle 9, October 1982

8-2
NOS/VE Cycle 9 Helpful Hints

10126/82

8.0 STANO ALONE DEADSTART

q) Enter NVe deadstart commands when the system requests
them. ('0 = Y' must be specified on the 'pl display for
this to happen.)

Note: Standalone deadstart is always a 'quick'
deadstart, so no recovery of permanent files Is
possible. 'QUICKDS' mode is set internally and need not
be specified.

10) Enter OJ to display the system Job dayfile when the
s.ystem requests It. The "OJ' d iSP'ay is on the I eft
ser een.

11) Now the system
entered.

is operational and commands can be

Cycte q, October 1982

9-1
NOS/VE Cycle 9 Helpful Hints

10126/82

9.0 INTERACTIVE PROJECT DUMP ANALYSIS PROCEDURES

The following procedures were developed by the interactive
project to assist them In interpreting dumps. They guarantee
the procedures work if your user name is IFP; otherwise caveat
emptor. For more Information about these procedures, contact
fred 8ischke.

The following dump analysis procedures are available in the
IFP catalog:

EOOSIM

This is a eel procedure which brings an EOO dump tape on a
speci fled

VSN into the simulator. The procedure can be accessed from
the IFP

catalog as follows:

get,eddsim/un=ifp

begin"eddsim,vsn (vsn is the vsn of the EDD dump tape)

ANAlEXC

This is a Simulater INCLUDE file which does 8 preliminary
analysis of

the current simulator exchange package (when the system
cr:8shes in task

Cycle 9, October lq82

9-2
NOS/VE Cycle q Helpful Hints

10126/82

9.0 INTERACTIVE PROJECT DUMP ANALYSIS PROCEDURES

services, this will normally be JPS). A qr exc=mon or qr
exc=rma can be

used to get Into another exchange package before doing the
include.

The Include fife is ANAlEXC/UN=IfP. It can be cat led from
the simulator

as follows:

'get,analexc/un=ifp' ; include analexc

(carriage return) a lone carriage return must be entered
aft er an INCLUDE

in order to start it up

SEGOUMP

This is a eel procedure which calls OSDIV to dump 8

specified segment to
a list file which can then be examined with an editor or
printed.

The procedure can be accessed from within the Simulator as
fo' lows:

The segdump parameters areS

se g - segment number in hex (defaul t Is 1)

length -- number of bytes to dum~ In hex (default Is 10000)

list - name or the 'ist file (defautt is LIST)

exc - reference exchange package (default is JPS)

cpf - name of checkp~int file (default is CPF)

Cycle 9, October 1982

9-3
NOS/VE Cycle 9 Helpful Hints

10126/82

9.0 INTERACTIVE PROJECT DUMP ANALYSIS PROCEOURES

In most cases of task services debugging, only the seg
par amet er is

needed.

ANAlJOB

This is a eeL proce~ure which uses OSOIV, XEDIT and the
SI m u I at or t 0

pe r for rna nan a Iy s i so f all t 8 S k s in a specified Job. The
procedure can

be accessed from within the simulator as follows:

Iget,anaIJob/un a lfp' ; tbegln"anaIJob,seg,cpf'

The anaJjob parameters are:

seg the monitor segment which contains the exchange
packages of the Job (14 Is the system job, 15 is job 1 etc.
) (default is 14)

cpt - the name of the simulator file « default Is CPF)

After the procedure has completed, a list of the RMA's of
the

Job's exchange P8c~ages can be obtained by doing the
fol lowl ng I

Include tplist

(carriage return)

A traceback of al' tasks in the Job can be obtained by
dol ng the

Cycle 9, October 1982

NOS/VE Cycle 9 Helpful Hints

q.D INTERACTIVE PROJECT DUHP ANALYSIS PROCEDURES
q.4

9-4

10126/82

__________________ ----------------------------------- _ _____ N _______ _

fo.lowing l

include tblist

(carriage return)

Include tbrun

(carriage return)

Cycle 9, October 1982

Al
NOS/VE BACKGROUND DOCUME~TS

10126/82

1.0 Hardware Overview

1.1 An introduction to tyaER 180

1.2 CISO Instant

1.3 Model Indeperdent General Design Specification
ARH1700

2.0 NOS Reference Hanuals

2.1 XEDIT V3.0 - 60455730

2.2 IAf Vl.O User's Guide - 60455260

2.3 NOS Version 2 Reference Set - Vol 3, 60459680 - Vol
4, 60~59690

2.4 NOS Systems Programmer's Instant - 60459370

2.5 NOS Version 2 Operator/Analyst Handbook - 60459310

2.6 NOS Version 2 Oiagnostic Index - 60459390

2.1 NOS A170 ERS

2.8 NOS A170 GIO - ARH30bO

3.0 ~OS/VE Reference Documents

3.1 Program Interface ERS ARH3610 obtained from
Karen Rubey (482-3966) or via SES.TOOlDOC

3.2 Command Interface ERS ARH3609 obtained from
Karen Rubey (482-3966) or vla'SES.TOOlDOC

3.3 NOS/VE Procedures and Conventions
obtained by SES.TOOlDOC

SESOOIO

3.4 listing of atl NOS/VE Modules obtained by
SES,OEV1.LISTNVE. See Integration Procedures
Notebook ror details.

3.5 NOS/VE Internal Interface Maintenance Procedures
Memo available from S.C. Wood.

3.6 Integration Procedures Notebook Obtained by:
Acquire,IPNOCC/UN=DEV1. SES.PRINT,IPNDOC.

Cycle 9, October 1982

12
NOS/VE BACKGROUND DOCUMENTS

10126/82

4.0 Tools Reference Documents

4.1 CYBIl Interactive Debugger - ARH3142

4.2 SES User's Golde - ARH1833

4.3 CYBIl Specification - ARH2298

4.4 C180 Assembler ERS - ARH1693

4.5 Simulator ERS - ARH1729

4.6 VEGEN ERS - ARHZ591

4.7 VElINK ERS - ARH2816

4.8 Simulated llC ERS - ARH3125

4.9 Object Code Utilities ERS - ARH2922

4.10 CYBll Implementation Dependent Handbook - ARH3078

4.11 CYBER 160 INTERACTIVE DEBUG External
Specification and Users Guide - S4028

4.12 CYBER 180 II Assembler ERS - ARH3945

4.13 ERS for Source Code Utility - ARH3883

Reference

Cycle q, October 1982

NOS/VE BACKGROUND DOCUMENTS

01.0 KEYPDINTS

01.0 KfXeOlUIS

Dl-1

10/26/82

Keypoints are used to give an execution time trace of
program f.ow by showing that a given function is being performed
(that Is, that a given procedure Is being executed) •
KeYPojnts may also be used to djsptay request parameters,
status and error conditions.

The general form of the keypolnt instruction is:

01.1.1 KEYPOINT CLASSES

A keypoint is identified by both class, and identifier.
The following deck explains the partitioning of the keypoint

classes.

OSDKEYS
COMMON

CONST

{ Keypoint Classes ~
{

{ The 16 kevpoint classes supported by the hardware are
{ partitioned between the System, Product Set and User 8S follows.

osk$system_class = 0 { 0.. 5},
oskSproduct_set_class = 6 { 6 •• 10 },
osk$user_class s 11 {11 •• 14 },
oskSpmf_contro' • 15;

Cycle 9, October 1982

01-2
NOS/VE BACKGROUND DOCUMENTS

10126/82
NN_NH_HNHNHNN_H __________ N ___ _

Dl.0 KEYPOINTS
01.1.1 KEYPOINT CLASSES
_N ______________________________________ H _________________ NN __ N ____ _

{ Keypoint Multiplier:
{
{ By convention,
{ the 32 bit keypolnt code supported by the hardware
{ is split into two fields. The right field contains a keypolnt
{ Identifier which is used to identify a function within a
{ keypoint class. For example, If a particular keypoint class
{ represents exit from a procedure,
{ then the keypoint Identifier might Identify exIt from
{ procedure A versus exit from procedure B.
{ The left field is used as a data parameter appropriate to the
(function Identified by the keypoint identifier. In the
{ procedure exit example above,
{ the data parameter field might be used to indicate the
{ status of the procedure cal'.
{ The keypolnt multlpJ ler Is used to partition the keypolnt
{ code into the two fields. The data parameter should be
{ multiplied by the keypoint multiplier to prevent It from
{ overlapping the keypoint identifier field.

CONST
oskSm = 4096;

01.1.2 ~OS/VE KEYPOINT CLASSES

Five keypoint classes named ENTRY, EXIT, UNUSUAL, DEBUG,
and DATA are defined, taking five of the available sixteen cf"asses
by the hardware.

ENTRY - Every gated procedure plus al' major internal procedures
(those shared across 'unctiona' areas) should contain a
keypolnt of this class. These keYPoints shoutd be placed
as close as possible to the entry to the procedure.

EXIT - Every gated procedure plus all major internal procedures
(those shared accross functional areas) should contain a
keypolnt of this class. These keypoints should be placed
as closed as possible to the exit to the procedure.

UNUSUAL - Every situation wh1ch Is unexpected or quite unusual
should contain a keypolnt of this class. It Is Intended
that these keypoints Mould be enabled at all times. The
frequency of encountering these keypolnts SHOULD BE
very lowe The DATA keypoint class Is not allowed in
conjunction with 8 keypolnt of class unusual.

Cycle 9, October 1982

01-3
NOS/VE BACKGROUND DOCUMENTS

10126/82

01.0 KEYPOINTS
01.1.2 NOS/VE KEYPOINT CLASSES
_________________________ N ________________ NN_N_N ______ NN __________ N_

DEBUG - These keypoints are for providing additional trace
information as an assist In debugging hardware or soft~are
problems. OeBUG class keypolnts would be most useful in
the more complex areas of the system.

DATA - This keypoint class can be used with ENTRY, EXIT, and
DEBUG keypoints for the gathering of extra data. All DATA
keypolnts encountered are supplying additional data which
will be associated with the last ENTRY, EXIT, or DEBUG
keypoint.
DATA keypoints should be used with care since the PMF
hardware can only buf~er up 16 keypoints, keypoint cluster
can cause lost keypoints.

The following deck defines the NOS/VE OS class constants.

OSOKEYC
COMMON
{Define KEYPDINT CLASS Codes.

CONST
oskSdata = OskSsystem_class + 0, { as - nATA keypoint}
osk$unusual = osk$system_class + 1, {u as - Unusual keypoint.}
oskSentry = oskSsystem_class + 2, {E OS - Entry keypoint}}
oskSexlt = oskSsystem_class + 3, {X OS - Exit keypoint}
os k$ d e bu g= 0 s k:$ s y s t e m_ c I ass + 4; { 0 OS - Debug key PO i n t • }

{*cal t c,osdkeys

01.1.3 KEYPOINT DATA AND IDENTIfICATION

Upon successful execution each keypoint instrucion will
provide a total of 32 bits of Information. Our convention uses
12 bits of this for keypoint Identification and the remaining 20
bits as user supplied data. Try to use this 20 bits to supply
meaningful Information (taskid, segment number, file Identifier,
queue length, page number, time, etc.). The keypoint
Identification codes are cefined In the attached common deck. On
DATA class keypoints the data belongs to the previous keypoint
and the full 32 bits is available for additional user data.

Cycle 9, October 1982

01-4
NOS/VE BACKGROUND DOCUMENTS

10126/82

01.0 KEYPOINTS
01.1.4 EXAMPLE ISSUING KEYPOINTS
_________ NNN ________________ • ______________________ N ____ N __ NN_N_N_M_

01.1.4 EXAMPLE ISSUING KEYPOINTS

ENTRY keypolnt with data:

'INlINEtfkeypoint', oskSentry, oskSm*taskld.index,
tmkSexlt_task);

UNUSUAL keypoint with no ~ata:

#INLINE ('keypotnt t , oskSunusual, 0, mmkSno_memory);

ENTRY keypoint with extra data:

tINLINE ('keypolnt·, oskSentry, oskSm * segment_number,
mmkSpage_'ault);

#INlINE ('keypolnt', ask'data, offset, 0);

01.1.5 KEYPOINT IDENTIFIEPS

Each area of the operating system has been given a range of
Identifiers to use ror ke)Points. The base for each area is
defined on common deck OSOKEYD. Each area should
have a deck xxDKEY (where xx is the product identifier)
where the areas keypoint constants are deflned(e.g.tmkSexit_task).
Please reference the section on keypolnt description decks, for an
example of one of these decks.

OSDKEYD
COMMON
{This deck defines constants for use with KEYPOINTS.

{Define base keypoint procedure Identifiers for each area of the
{OS.

CONST
amkSbase = 100, {lOO - 149}
bakSbase = 200, {200 - 249}
clkSbase = 250, {250 - 299}
cmkSbase = 300, {300 - 349}
dbkSbase = 350, {350 - 399}
dmkSbase = 400, {400 - 549}
fmkSbase = 550, {550 - 599}

Cycle 9, October 1982

01-5
NOS/VE BACKGROUND DOCUMENTS

10126/82

01.0 KEYPOINTS
D1.1.5 KEYPOINT IDENTIfIERS
________________________ N ______________________ N _____ N_N _______ NNHHN

ickSbase = 600, {bOO - 649}
ifkSbase = 650, {650 - 699}
ilkSbase = 700, {700 - 749}
InkSbase = 750, {750 - 799}
jmkSbase • 800, {SOO - 849}
'gkSbase = 850, {S50 - 899}
IlkSbase = 900, {900 - 949}
lokSbase = 950, {9S0 - 999}
lukSbase = 1000, {lOOO - 1049}
mlkSbase = 1050, {lOSe - l099}
mmkSmonitor_base = Ilea, {110a - 1149}
mmk$Job_base = 1150, {IISO - 1199}
mskSbase • 1200, {120C - 1249}
mtkSbase = 1250, {125C - 1299}
ock$base = 1300, {130C - 1349}
ofkSbase - 1350, {135C - 1399}
oskSbase = 1400, {140C - 1449}
pfkSbase = 1500, {150C - 1549}
pmkSbase - 1600, {1600 - 1699}
rhkSbase = 1750, {l75C - 1799}
srk$base = 1800, {lSOO - 1819}
stkSbase = 1850, {la5t - 1899}
tmkSmonitoT_base = 1900, {1900 - 1949}
tmkSJob_base = 1950, {1950 - 1999}
jskSmonitor_base • 2000, {ZOaO - 2049}
JSk$Job_base = 2050, {2050 - 2099}
8vk$base = 2100, {210e - 2149}
sfk$base = 2150, {21Se - 2199}
lokSbase = 2200, {ZZOC - 2Z49}
rmkSbase = 2250, {225C - 2300}
mtkSassembly_language_base = 4000; {4000 - 4095}

{ OS assembly language 4000 - 4095}
<*callc,osdkeyc

01.2.1 1N THE SIMULATOR

~hen executing on the simulator alt keypolnt Instructions cause
an entry to be added to the local fi Ie SESSMKF.

Cycle 9, lctober 1982

01-6
NOS/VE BACKGROUND DOCUMENTS

1()/2bI82

01.0 KEYPOINTS
01.2.1 ON THE SIMULATOR
_H_HH_N_N ___________________________ H _______ • _____________________ H_

01.2.2 ON THE HARDWARE

Software keypoint collection is available for collecting system
and Job keypolnts. System keypoints are those keypoints in the
entire system and Job keypolnts are on'Y those dealing with a
particular job. Only one system keypoint co.tector
can be active at one time, but each Job may have an active
job keypoint col.ector. Software keypoints are collected on a
f I I e I oea t tot h e Job J n w h f c h t hek ey poi n teo. f e c t I on t ask i s
running. After keypoint collection Is terminated this fite can
saved on the 170 side and analyzed by the keypoint analyzer.

Three commands are supplied to utilize the keypo'nt feature:
ACTK, DEAK, and EMIK.

The ACTK command initiates keypoint recording and collectjng.
It has the form of:

ACTK,mode,environment,wonitor_mask,Job_mask,
start_c'ass,stop_c' ess,keypoint_fi Ie,
collector_buffer_size,collector_delgy

mode or m :: 'software', 's',
'hardware', or 'hI

environment or e = 1Job"'j"
'system', or's'

monitor_mask or mm :: a list of intEgers
ranging from 0 to 15
example: mm=(2,6,9,12)

Job_mask or jm :: a list of Integers
ranging from 0 to 15
example: jm::(C,3,5)

parameter is
required

parameter is
requi r€~d

default is all

d € f au • tis at'

start_class or start = an Integer in default is 15
the range from 0 to 15
This specifies that keypolnt collection
should not start unti I a keypoint of this

Cycle Q, October 1982

01-1
NOS/VE BACKGROUND DOCUMENTS

10/26/82

01.0 KEYPOINTS
01.2.2.1 ACTK command

--
class Is encourtered.

stop_class or stop = an integer in default is 15
the range from 0 to 15
This specifies that keypolnt collection
should stop when a keypoint of this
class Is encountered.

keypoint_'lte or kf = fife name
This specifies the fi Ie on which
key points ar e to be s eved.
This parameter is used
only with soft~are keypolnts.

collector_buffer_size or cbs = an integer
In the range from 1000 to 100,000
This parameter Is used only with
software keypoints.

col lector_delay or cd • an integer
in the range from 10 to 100,000
The value specified Is the delay
per iod in mill iseconds. Th i s
parameter is used only with
software keypoints.

01.2.2.2 IlfAti_"mmanli

def au It i s
SlOCAl.KEYFIlE

default Is 10,000

d ef au I tis 50

The OEAK command terminates keypolnt collection.

OEAK,enyjronment

environment or e = ljob','Jl,
• system', or "s'

01.2.2.3 Ef11~_Ji.gEIIl.aIld.

der au I tis job

The EMtK command is ~sed to issue keypoints.

class • an integer In the range
from 0 to 15

code = an integer In the range

d ef au I tis 15

default Is 0

Cycle 9, October 1982

NOS/VE BACKGROUND DOCUMENTS

01.0 KEYPOINTS
01.2.2.3 EMIK command

01-8

1C1/26/82

__ N_N ______ .N __ N_NNNN.N_.N~N*NNNN.NNNNNNN-NNNNNNNN-NNNNNNNNNNNNNNNNN

from 0 to OFFFFFFFF(16)

After keypolnt collectlcn Is terminated the keypoint file,
can be saved on the 170 by a REPLACE_FILE with B56
conversion. For example.

REPlACE_FILE,keyfile,keyfile,b56

On the 170 side this can be analyzed by using NVEKEY,
format :I: HOW.

01.3.1 NVEKEY

The SESSMKF file produced on the simulator, or the
KEYFIlE produced on the hardware can be reformatted Into a
readable listing by executing the following procedure.

SES.NVEKEY [KPF=] [FORMAl=] [KO=] (AREA:]
NVEKEY creates a simulator generated keypolnt trace file.
The Rkpt" parameter Is the keypoint file used as input.
The "kd" parameter is a file or list of files which deflne(s)
the keypolnt descriptions.
----PAR4METER-------OEFAUlT--------AlLOWABlE VAlUES------

k p f' S E S S f'lK F • filename
• KE YF ILE' i f fo r mat-HOW

ror~at 'SIM' slm,hdw
kd 'KEYDESC' file name(s)
area &USER& user name

If run interactively, wher the procedure terminates the
reformatted listing is on local file KEYFIlE.

Cycle 9, October 1982

01-9
NOSIVE BACKGROUND DOCUMENTS

10126/82

01.0 KEYPOINTS
01.3.2 KEYPOINT DESCRIPTION fILE

-----------------------------._-------------------------------------
01.3.2 KEYPOINT DESCRIPTION FILE

The keypolnt descriptions are used by the keypoint
analyzer utility to direct the reformatting of the
keypoint information.

Each area has a keypoint constant deck xxOKEY (where ~x
Is the product idle The keypotnt descriptions are now
included In this deck Immediately following the keypoJnt
constants (slmiliar to the message templates).

Each description has the fo.lowing format.
Note: each element (If given) is positionally dependant.

CLASS of keypoint - required
E En tr y
X eX it
U Unusual
o Debug

SUB_ID_FIELD - optional - (described later)

KEYPOINT_lABEl - required - This is a string that
describes the purpose of the keypoint.

DATA_LABEL - optional - This Is a string of up to 8
characters describing the data portion of the keypoint.

DATA_FIELD_DESCRIPTOR - optiona' - This consists of data
format and length.
data_format

H Hex
I Integer (decimal)
A A.SCII

Concatenated to this Is the length of the data portion of
the keypolnt, In decltral bits.
For example: 120

Cycle 9, October 1982

01-10
NOS/VE BACKGROUND DOCUMENTS

10126/82

01.0 KEYPOINTS
01.3.2.1.1 EXAMPLE KEYPOINT OECK
NNNNNNN_N_NNNNNNNNNNNNNNNNNNwNNNNNNNNNNNNNNNNNN_NNNNNNNNNNNNNNN __ NNN

01.3.2.1.1 EXAMPLE KeYPOI~T DeCK

STOKEY
COMMON

{ PURPose:
{ Th Is deck contal ns al. of the set manager keypoi nt constants.

CONST
stkScreate_set : stk$base + 1,

{E 'stpScreate_setl 'ring • H}
{X 'stp$create_set I 'status t 120 }

stkSpurge_set = stkSbase + 2,
{E 'stp$purge_set' }
{X 'stp$purge_set' 'status '120}

stkScant_dm_store_set_ord = stkSbase,
{U 'cant dmp$store_8vt_set_ordlnal' 'avtindx ' H20 }

stkSpf_root_size = stkSbase + 5;
{O 'pf _root_s I ze' 'root s I z • H20 }

I? PUSH (LIST :. OFF) 11
{*c a II c osdkeyd
1? POP??

This optional field alleMS 8 means of subdividing a single
keypoint Into several descriptors. The particular descr Iptor
is chosen on the basis of a selectable number of bits of the
data field. This field has the followjng format:

SUB_10_LENGTH - This specifies the number of bits (right most)
of the data field to use, to determine which
descriptor to choose.

SUB_10_MATCH - This specifies the integer Identifier used to
match the data portion.

Example:
mmk$page_fault : mmkSmcnitof_base + 6,

{E 'page fault processor' }
{E 4.1 'Page found in avail queue' 'pfti t H16}
{E 4.2 'Page 'ound In avail modi,jed queue' 'pftl t H16}

Cycle q, October 1982

MOS/VE BACKGROUND DOCUMENTS
01-11

10/26/82

01.0 KEYPOINTS
01.3.2.1.2 SUB_ID_FIELD NN ____ N_NN __ N __________ N _____ N ____ N _____ N _____________ NN ____ NNN __ N __

If this keypoint was Issued and produced data of 2, the
descriptor with the sUb_id_match field of 2 would be
used (tpage found in avail modified queue').
These keypoints were issued with a sub_id_length = 4,
thus the 4.x. for example:
#INLINE (tkeypoint', oskSentry, oskSm *

(pfti * 16 {2 ** sub_ld_length} + 2{sub_id_match}},
mmk$page_fault)j

The keypolnt descriptions are kept on 8 file called KEYOESC
on the Integration catalog. This ftle may be produced by:

SES.GENCOMP M=OSMKEYS AS-«NOSVEPl,OSlPI,INTZ») CF=KEYDESC

The user may add keypolnts to her xxOKEY deck locally, and
the KEYDESC f'Ie may be produced as above, specifying the
additi onal local bases. The KEYOESC f i I e may then be saved
on her catalog.

If new keypoint decks are added, *catlc 's to these new decks
chould be added to the deck OSMKEYS, and the appropriate
base constants added to deck OSOKEYD.

When transmitting changes to keypoint decks, be sure to inform
Integration, via the transittal form, to recreate the fi Ie
KEYDESC.

This section wl'l only be useful to those desiring to add
additional keypolnt classes, keypolnt class base constants,
or new keypoint description decks.

The classes, Identifiers, and descriptions are each buffered
by a comment. for example, to add another keypolnt class:
{$$$ START KEYPOINT CLASSES $SSl
CONST

pskSentrya osk$product_set_class + 1; {E PS - entry keypoint}
{$$$ END KEYPOINT CLASSES $$$ }
note: The E follwoing the "{" wi II be used in the description.

Cycle 9, October 1q82

01-12
NOS/VE BACKGROUND DOCUMENTS

10126/62

01.0 KEYPOINTS
01.3.2.3 osmkeys format _RNNN_NNNNN __ ~NNNNNNN_N_NN_N_NNNNN_N ___ N_NN __ NN_N_NN ____ NNNNN ____ NNN

This new section should be appended to the end of the KEYDESC
file. Readers desiring mere information should reference the
attached BMF, and the attached decks OSMKEYS.

The following represents a sample of how to set up
the description module.
Note: Comment put around *c811 for sake of documentation only.

OS MKEY S
11 lEFT 1= 1, RIGHT 1= 11C 11
MODULE keypolnt_descriptfon_flle;
{*catlc,osdkeys
{SSS START KEYPOINT CLASSES iSS}
{*caltc,osdkeyc
{SIS END KEYPOINT CLASSES $$$}'
{SSS START KEYPOINT IOENTIFIER BASES SSS}
{*cal • e, osdkeyd
{S$S END KEYPOINT IDENTIFIER BASES SSS}
{SIS START KEYPOINT DESCRIPTIONS SSS}
{*callc,amdkey
{*call c, badkey
r* c a' , e, e I dk ey
{*callc,cmdkey
{*call c, dbdkey
{*ca' • c, dmdkey
f*eall e, fmdkey
{*call c, i cdkey
{*cal c, I fdkey
{*eal c, i i dk ey
{*cale, I ndkey
{*cal c, jmdkey
{* c a c, Ig d key
{*ca c, II dkey
<* ea c, lodkey
{*ca c, I udkey
{*ca c,mldkey
{*ca c, mmdmkey
{*eal c,mmdJkey
{*c al c, ms dkey
{*ca' e,mtdkey
{*eall c,ocdkey
{*call c,ofdkey
{*call c,osdkey
{*eal' 0, pfdkey
{*call c,pmdkey
{*ea •• c, rhdkey
{*cal 'C, sr dkey
{*call c, stdkey
{* call c, tmdmk ey

Cycle 9, October 1982

NOS/VE BACKGROUND DOCUMENTS

01.0 KEYPOINTS
01.3.2.3 osmkeys format

01-13

10/26/82

_N ____ NNN _____ NNNN __ NMN ___________________ N _____ N ___ N _______ NN _____ _

{*ca.tc,tmdJkey
{*eal' c, jsdmkey
{*eal' c, JsdJkey
{* c a I • c, av dk ey
{*cal' c, sfdkey
{*cat Ie, iodkey
{*eall c,rmdkey
{$$$ END KEYPOINT DESCRIPTIONS S}
MODEND keypolnt_descrlptl~n_flle;

The output from procedure NVEKEY Is a file called KEYfllE.
This reformatted listing contains two sections. The first
section Is a listing of all the keypoints In the order they were
Issued. The second section is a summary of the number of times
each keypotnt occured.

Each .Ine In the first section has the following format;

The RT field designates the value of the free running
microsecond clock (time since deadstart) when the keypoint was
executed. On the simulater the clock is incremented by 1 for
each instruction executed.

The 1SL field designates the time (microseconds) since the
last keypolnt instruction was executed.

The DATA field specifies the value of the data portion of the
keypoint in the format described in the keypoint description
file for this keypoint.

The DATA_LABEL field Is the data 'abel field from the
keypoint description file for this keypoint.
This Identifies the data being displayed.

The S field specifies the state of the machine when the
keypoint was Issued and is one of the following:

M - Monitor mode
J - Job mode

An * preceding the S field Indicates that
trap processing Is active, that is the trap handler has

Cycle 9, October 1982

01-14
NOS/VE BACKGROUND DOCUMENTS

10/26/82

01~O KEYPOINTS
01.4 REFORMATTED FILE DESCRIPTION •••••••••••••• _ ••••• N ••••••••••••••••• _ •••• ___ •• -_ •••• --_______ •• __ _

been entered, but not exited.

The TN field gives the global task Id of the task that
was executing when the keypoJnt was Issued.
The system is task 1.

The AREA_IO field ts the area Identifier for the area
issuing the keypoint.

The KP_LABEL is the ke)Point label field from the keypojnt
description file. This describes the keypoint.

NOTE: For an un~e'lned keypolnt, that is, one which has no
descriptor entry, the area_ld field contains the
integer for the keypoint class, the class field
on the output is specified as "UNO", and the KP_lABEl
becomes the id_number of the keypoint.

(analyzer_descriptor_Input> ::= <keypolnt_ctass_allocation_deck>
[<definition_deck> •••]

<k eypoln t_c I as s_811 0 cat I :0 "_deck> : 1= <Cy b i' code and /0 r comments>
[<class_base_deflnltlons) •••]

<cybit code and/or comments>

<class_base_ld> ::= osk$system_class : oskSproduct_set_class
oskSuser_class : osk$pm'_control

(spc> ::= (<space) •••]

<base> ::- <integer)

<definition_deck> ::= (class_definitlon_deck> :
<base_definltion_deck> :
<keypoint_deflnltlon_deck>

(class_definition_deck> ::= {$$$ START KEYPOINT CLASSES $$$}
<cybll code and/or comments>
[<class_definitions) •••]

Cycle 9, October 1982

MOS/VE BACKGROUND DOCUMENTS

01.0 KEYPOINTS
01.5 BNF KEYPOINT DESCRIPTION

01-15

10/26/82

____ N ___ N_N_N ___ NN_NNN _________ NN_NNNNN_NN_N_N ________________ N ___ N_

<cybll code and/or comments>
{$$$ END KEYPOIHT CLASSES SSS}

(class_definitions> It: <keypoint_class> <spc> = (spc>
(ctass_base_Jd> (offset>
{ <keypoint_class_id> (cybi4 comment)

<keypolnt_class> :t= <Identifier>

(offset> t:: + <spc) (integer> <delimiter>

<delimiter> ::= , : ;

(base_deflnitlon_deck> :::
CSS START KEYPOINT IDENTIFIER B~SES SSS}

<cybil code and/or comments>
[<range_base_definltions> •••]
<cybi I code and/or comments>
{$SS END KEYPOINT IDENTIFIER BASES $$S}

<range_base_defi nj ti ons> :t: <keypo i nt_b 8se> <de Ii mi ter>
<base_ran ge >

<keypolnt_base> :t: <spc> <base_id> <spc> = <spc) <base>

<base_id> ::: <identifier)

<10M_base> ::= (Integer>

<high_base> 1:= <integer)

<keypoint_deflnition_deck> ::=
{S$$ START KEYPDINT DESCRIPTIONS $$$}

<cybil code and/or comments>
[(xxdkey_deck> ••• 1
<cybil code and or comments>
{$$$ END KEYPOINT DESCRIPTIONS $SS}

(xxdkey_deck) ::- [<cybl t code and/or comments>]
[<keypclnt_lnfo> ••• 1

<keypoint_info> ::= <keypoint_constant_1 ine> <delimiter> <eol>
[<keypolnt_~escriptor> •••]
[<blank lines>]

Cycle 9, October 1982

01-16
NOS/VE BACKGROUND DOCUMENTS

10126/82

Dl.0 KEVPOINTS
01.5 BNF KEYPOINT OESCPIPTIO~ ~~ ___ .~~~~~ _____ N_~ ___ ~N ________________ N~ ___ N ____ ~~ ______________ 8M

<keypolnt_constant_line> I:. <keypoint_constant> (spc) : (spc)
<keypotnt_base> (spc) { (offset>] (spc)

<keypolnt_constant> ::= <ld~ntlfter>

<keYPo'nt_base) ::a <identifier>

<keypoint_descriptor) ::= {(keypoint_descriptor_list> (sPc> [) 1
<eo'>

<keypolnt_descriptof_llst) ::a <keypoint_ctass_id> (spc)
{ <special_ease_code> 1 (sPc>
[<sub_id_field>] (spc> <keypolnt_label>
<spc) [<data_field>]

<special_ease_code> ::: M : N : S : T
(M = Mtr, N a Nos, S = task Switch, and T = Trap)

(in bits)

<small_integer> ::: 0 •• 0 FFFFFFFFFFFFF(16)

<keypolnt_label> ::a <'abel)

<'abel) ::a • <character_string> t

<character_string> ::= any visible characters except •

(data_label> ::= <label>

<data_format> ::= A : H : I
(A = Alphanumeric, H = Hex, I = Integer)

(NOTE: <sub_ld_length> + <data_field_length> must be <= 52 bits)
(NOTE: operating system <keypoint_class_ld> = {O,E,U,X}}
(NOTE: <keypolnt_class_ld) for any keypolnt used for
additional in'or.atlon to previous keypoints

Cycle 9, October 1982

01-11
NOS/VE BACKGROUND DOCUMENTS

10126/82

01.0 KEYPOINTS
01.5 8NF KEYPOINT DESCRIPTION
MM_M _________ M __ M ________ _

must be a space)
(NOTE: a <definition_deck) remains In effect until
superceeded by a deck which redefines the
area to which it pertains)

Cycle 9, October 1982

1
10/26/82

Table of Contents

1.0 KAJOR CHARACTERISTICS OF THIS BUILD ••••••••••
1.1 NOS/VE USAGE EXAMPLES •••••••••••••••••

1.1.1 EXECUTING PROGRAMS •••••••••••••••••
1.1.2 CREATE OBJECT LIBRARY ON NOS/VE AND SAVE IT ON NOS.
1.1.3 MODIFY A PREVIOUSLY SAVED OBJECT LIBRARY ••••••
1.1.4 ROUTE AN INPUT FILE FROM NOS TO NOS/VE •••••••
1.1.5 PRINT A NOS/VE FILE ••••••••••••••••

2.0 COMMAND INTERfACE STATUS • • • • • • • • • • • • • •••
2.1 ACCESS TO NOS/VE 1M DUAL STATE •••••••••••••

2.1.1 LOGIN TO NOS/VE ••••••••••••••••••
2.1.2 TERMINAL USAGE •••••••••••••••••••
2.1.3 NOS/VE PROGRAM ACCESS TO THE TERMINAL •••••••

2.2 COMMAND AND PARAMETER NAMES ••••••••••••••
2.3 COMMAND FUNCTIONS •••••••••••••••••••
2.4 SYSTEM ACCESS COMMANDS •••••••••••••••••
2.5 RESOURCE MANAGEMENT • • • • • • • • • • • • • • • • • •
2.6 FILE MANAGEMENT ••••••••••••••••••••
2.7 PERMANENT FILE MANAGEMENT •••••••••••••••
2.8 sel STATEMENTS AND PROCEDURES •••••••••••••
2.9 INTERACTIVE COMMANDS ••••••••••••••••••
2.10 OBJECT CODE MAINTENANCE • • • • • • • • • • • • • • • •
2.11 USER SERVICES •••••••••••••••••••••
2.12 FILE ROUTING ••••••••••••••••• • • • •
2.13 PROGRAM EXECUTION •••••••••••••••••••
2.14 JOB MANAGEMENT •
2.15 NON STANDARD COMMANDS • • • • • • • • • • • • • • • • •

2.15.1 DELETE_CATALOG_CONTENTS : DELee ••••••••••
2.15.2 DISPLAY_ACTIVE_TASK : OISAT ••••••••••••
2.15.3 DISPLAY_SYSTEM_DATA : OISSO ••••••••••••
2.15.4 DISPLAY_JOB_OATA : OISJO •••••••••••••
2.15.5 OISPLAY_COMMANO_INFCRMATION : DISCI ••••••••
2.15.6 CONVERT_OBJECT_FIlE : CONOF ••••••••••••
2.15.7 GET_OBJECT_FIlE : GETOF ••••••••••••••
2.15.8 GET_OBJECT_LIBRARY : GETDL ••••••••••••
2.15.9 DISPLAY_OBJECT_TEXT : DISOT ••••••••••••
2.15.10 GET_SOURCE_LIBRARY : GETSl ••••••••••••
2.15.11 EDIT_FILE : EDIF •••••••••••••••••
2.15.12 JEDIT ••••••••••••••••••••••
2.15.13 DEBUG ••••••••••••••••••••••
2.15.14 SET_LINK_ATTRIBUTES: SETLA •••••••••••

3.0 PROGRAM INTERFACE STATUS •••••
3.1 COMMAND PROCESSING ••••••••
3.2 MESSAGE GENERATOR ••••••••
3.3 RESOURCE MANAGEMENT •••••••
3.4 PROGRAM EXECUTION ••••••••
3.5 PROGRAM COMMUNICATION ••••••
3.6 CONDITION PROCESSING •••••••

• • • • • • • • • • •
• • • • • • • • • • •
• • • • • • • • • • •
• • • • • • • • • • •
• • • • • • • • • • •
• • • • • • • • • • •
• • • • • • • • • • •

1-1
1-6
1-6
1-6
1-8
1-q
1-9

2-1
2-1
2-1
2-1
2-2
2-2
2-3
2-4
2-4
2-4
2-4
2-5
2-6
2-6
2-7
2-7
2-7
2-7
2-8
2-8
2-8
2-9
2-9

2-10
2-11
2-12
2-13
2-13
2-14
2-15
2-15
2-15
2-16

3-1
3-1
3-1
3-2
3-2
3-3
3-3

2
10/26/82

3.7 PROGRAM SERVICES • • • • • • • • • • • • ••
3.8 LOGGING •••••••••••••••• ••
3.9 FILE MANAGEMENT ••••••••••••••
3.10 PERMANENT FILE MANAGEMENT •••••••••
3.11 MEMORY MANAGEMENT • • • • • • • • • ••••
3.12 STATISTICS FACILITY ••••••••••••
3.13 INTERACTIVE FACILITY ••••••• ••••
3.14 NOS/VE EXCEPTIONS •••••••••••••

• • • •• • •
• • • • •• •
• • • • ••
• • • • • •
• • • • • •
• • • •••
• • • • • •
• •• •• •

4.0 DUAL STATE DEADSTART AND OPERATION •••••••••••
4.1 CURRENT DUAL STATE CONFIGURATION ••••••••••••
4.2 USER NAMES AND PERMANENT FILES • • • • • • • • • • • • •
4.3 CONVERTING VERSION 1 VALIDATION FILES TO VERSION 2 •••
4.4 TO RELOAD CONTROLWARE fO~ THE NOS/VE OISK DRIVER ••••
4.5 4170 NOS DEADSTART •••••••••••••••••••

4.5.1 CTI AND CHECKING CENTRAL MEMORY ••••••••••
4.5 •. 2 NOS DEADSTART •••••••••••••••••••

4.6 NOS/VE DEADSTART AND INSTALLATION •••••••••••
4.6.1 THE OS PROCEDURE ••••••••••••••••••

INSTAll_PRODUCTS Procedure •••••••••••••••
GET_PRODUCT Procedure •••••••••••••••••

4.6.2 EXAMPLE OF NOS/VE INSTALLATION DEADSTART ••••••
4.6.3 EXAMPLE OF NOS/Ve "NORMAL" DEADSTART ••••••••
4.6.4 EXAMPLE OF NOS/VE RECOVERY DEADSTART ••••••••
4.6.5 EXAMPLE OF MINIMAL NCS/VE DEADSTART ••••••••
4.6.6 USE Of THE QUICK_DEADSTART COMMANO •••••••••

4.7 NOS/VE INTERACTIVE FACILITY OPERATION •••••••••
4.7.1 OPERATOR INITIATION ••••••••••••••••
4.1.2 OPERATOR TERMINATION ••••.••••••••••••

4.7.2.1 Termination of 1 Series Networks 9.1/5F •••
4.1.2.2 Termination of 4 Series Networks 9.2/5G •••

4.7.3 OTHER OPERATOR CAPABILITIES ••••••••••••
4.8 NOS/VE OPERATOR FACILITY AND OPERATOR COMMANDS •••••

4.8.1 DELETE_JOB_QUEUE : DELETE_JOB_QUEUES OElJQ ••••
4.8 .• 2 REBUILD_INPUT_QUEUE : REBIQ ••••••••••••
4.8.3 REBUIlD_OUTPUT_QUEUE : REBOQ ••••••••••••

4.q ROUTE AN INPUT FILE FROM e170 TO C180 •••••••••
4.10 CONFIGURATION MANAGEMENT •••••••••••••••

4.10.1 SYSTEM CORE COMMANDS •••••••••••••••
4.10.2 JOB TEMPLATE COMMANDS •••••••••••••••
4.10.3 MULTIPLE VOLUME CONSIDERATIONS ••••••••••

4.11 K DISPLAY ASCII ••••••••••••••••••••
4.12 EDD AND DSDI INFORMATtO~ •••••••••••••••
4.13 NOS/VE TERMINATION ••••••••••••••••••
4.14 A170 NOS SHUTDOWN •••••••••••••••••••

5.0 RECOVERY OF NOS/VE PERMA~ENT FILES •••••
5.1 S eTVE FORMAT. • • • • • • • • • • • •• • •
5.2 SETVe USAGE ••••••••••••••••

6.0 SYSTEM CORE DEBUGGER •••••••
6.1 S YS DE au G • • • • • • • •• • • • •
6.2 SUBCOMMAND PARAMETER DEFINITIONS.
6.3 SYSTEM CORE DEBUGGER SUBCOMMANOS •

• • • • •
• • •• ••
• • • • •
• • • • •

• • • • • •
• • • • • •
• • • • .. .
• • • • • •
• •• • • •
•• • • •• •
• • • • • •

3-3
3-4
3-4
3-5
3-5
3-6
3-6
3-6

4·-1
4-1
4-2
4-2
4-3
4-3
4-3
4-4
4-5
4-6

4-11
4-12
4-13
4-13
4-14
4-14
4-14
4-15
4-15
4-15
4-15
4-16
4-16
4-17
4-21
4-21
4-21
4-22
4-22
4-23
4-23
4-24
4-24
4-25
4-26
4-27

5-1
5-1
5-2

6-1
6-1
6-2
6-2

3
10/26/82

6.3.1 SELECT. • 6-2
6.3.2 BREAKPOINT : B • • • • • • • • • • • • • • • • • • • 6-3
6.3.3 REMOVE_BREAKPOINT RB............... 6-4
6.3.4 lIST_BREAKPOINT: L8 • • • • • • • • • • • • • • • • 6-4
b.3.5 CHANGE_BREAKPOINT: CB • • • • • • • • • • • • • • • 6-5
6.3.6 TRACE_BACK : T8 •• • • • • • • • • • • • • • • • • 6-5
6.3.7 DISPLAY_STACK_FRAME : OSF ••••••••••••• 6-6
6.3.8 DISPLAY_REGISTER : D~ •• • • • • • • • • • • • • • 6-6
6.3.9 DISPLAY_MEMORY : OM •••••••••••••••• 6-7
b.3.10 CHANGE_MEMORY: eM •••••••••••••••• 6-7
6.3.11 RUN. • 6-7
6.3.12 SUPER_CHANGE_MEMORY : SCM. • • • • • • • • • • • • 6-1
6.3.13 FORMAT : FMT ••••••••••••••••••• 6-8
6.3.14 UNFORMAT : UHFMT • • • • • • • • • • • • • • • • • 6-8
6.3.15 DISPlAY_KONITOR_FAUlT : DISMF • • • • • • • • • • • 6-8
6.3.16 DISPLAY_Xes: OISXCB • • • • • • • • • • • • • • • 6-9
6.3.17 DISPLAY_TASK_ENVIRONMENT : DISTE ••••••••• 6-9

7.0 NOS/VE PROCESSING OF JOB MODE SOFTWARE ERRORS ••••• 7-1
7.1 INTRODUCTION • 7-1
7.2 TYPES OF ERRORS ••••••• • • • • • • • • • • • • • 7-1
7.3 SYSTEM ATTRIBUTES FOR ERROR PROCESSING • • • • • • • • • 7-2

7.3.1 HAlTRING • 7-2
7.3.2 SYSTEM_ERROR_HANG_COUNT •••••••••• • • • • 7-3
7.3.3 HALT_ON_HUNG_TASK ••••••••••••••••• 7-3
7.3.4 SYSTEM_DEBUG_RING ••••••••••••••••• 7-3
7.3.5 DUMP_WHEN_OE8UG •• • • • • • • • • • • • • • • • • 7-3

8.0 STANO ALONE DEADSTART • • • • • • • • • • • • • • • • •
q.o
9.1
9.2
q.3
9.4

INTERACTIVE PROJECT DUMP ANALYSIS PROCEDURES. • • •
•
•
•
•

• •
• •
• •
• •
• •

APPENDIX A NOS/VE BACKGRQUND OOCUMENTS •••••••••••

KEYPOINTS •

01.0 KEYPOINTS •••••••••••••••••••••••
01.1 ISSUING KEYPOINTS FROM CYBIL CODE •••••••••••

01.1.1 KEYPOINT CLASSES •••••••••••••••••
01.1.2 NOS/VE KEYPOINT CLASSES ••••••••••••••
01.1.3 KEYPOINT DATA AND IDENTIFICATION •••••••••
01.1.4 EXAMPLE ISSUING KEYPOINTS •••••••••••••
01.1.5 KEYPOINT IDENTIFIERS •••••••••••••••

01.2 COLLECTING KEYPOINTS •••••••••••••••••
01.2.1 ON THE SIMULATOR •••••••••••••••••
01.2.2 ON THE HARDWARE ••••••••••••••••••

01.2.2.1 ACTK command •••••••••••••••••
01.2.2.2 OEAK command •••••••••••••••••

8-1

9-1
9-1
9-1
9-2
9-3

Al

01

01-1
01-1
01-1
01-2
01-3
01-4
Dl-4
01-5
01-5
01-6
01-6
D1-7

4
10126/82

01.2.2.3 EMIK command •••••••••••••••••
01.3 KEYPOINT ANALYZER UTILITY •••••••••••••••

Dl.3.1 NVEKEY ••••••••••••••••••••••
01.3.2 KEYPOINT DESCRIPTION FILE •••••••••••••

01.3.2.1 keypoint decks ••••••••••••••••
01.3.2.1.1 EXAMPLE KEYPOINT DeCK ••••••••••••
01.3.2.1.2 SUB_10_FIELD ••••••••••••••••
D1.3.2.2 generating the descriptor 'ile ••••••••
Dl.3.2.3 osmkeys format ••••••••••••••••

01.4 REFORMATTED FILE DESCRIPTION •••••••••••••
01.5 BNF KEYPOINT OESCRIPTIO~ •••••••••••••••

01-7
01-8
01-8
01-9
01-9

01-10
01-10
01-11
01-11
01-13
D1-14

